language-icon Old Web
English
Sign In

Cured-in-place pipe

A cured-in-place pipe (CIPP) is one of several trenchless rehabilitation methods used to repair existing pipelines. CIPP is a jointless, seamless, pipe-within-a-pipe with the capability to rehabilitate pipes ranging in diameter from 0.1 to 2.8 meters (2–110 inches). As one of the most widely used rehabilitation methods CIPP has applications in sewer, and chemical pipelines. A cured-in-place pipe (CIPP) is one of several trenchless rehabilitation methods used to repair existing pipelines. CIPP is a jointless, seamless, pipe-within-a-pipe with the capability to rehabilitate pipes ranging in diameter from 0.1 to 2.8 meters (2–110 inches). As one of the most widely used rehabilitation methods CIPP has applications in sewer, and chemical pipelines. A resin-saturated felt tube made of polyester, fiberglass cloth or any of a number of other materials suitable for resin impregnation, is inserted or pulled into a damaged pipe. It is usually done from the upstream access point (manhole or excavation). It is possible to insert the liner upstream (e.g. from the downstream access point) but this carries greater risk. It is possible to install a liner from the downstream access point, upstream to a blind end; however, this carries the highest risk of all the CIPP installation methods. CIPP is considered a trenchless technology. Little to no digging is involved in this trenchless process, making for a potentially more cost-effective and less disruptive method than traditional 'dig and replace' pipe repair methods. The liner can be inserted using water or air pressure. The pressure required for insertion can be generated using pressure vessels, scaffolds or a 'chip unit'. Hot water or steam can be used to accelerate the curing rate of the resin. If a fiberglass tube is used, the curing of the resin can be triggered though the use of UV light introduced into the tube. As the resin cures, it forms a tight-fitting, joint less and corrosion-resistant replacement pipe. Service laterals are restored internally with robotically controlled cutting devices called cutters in the larger-diameter pipe. Smaller diameters (100 mm) can be opened remotely using smaller cutters designed for small diameter pipe. The service lateral connection can be sealed with specially designed CIPP materials, sometime referred to as a 'top-hat'. The resin used is typically polyester for mainline lining and epoxy for lateral lines. Since all resins shrink (epoxy resins shrink far less than poly and vinyl ester versions) and it is impossible to bond to a sewer that has fats, oils, and grease an annular space exists between the new CIPP liner and the host pipe. The annular space exists in all installations just some are larger than others and depending on the severity may need additional rehabilitation. There are multiple ways to prevent water from tracking in the annular space and entering back into the waste stream including: water swelling material (hydrophilic), lining of the entire connection and host pipe with a continuous repair (YT repair) gaskets, and point repairs placed at the ends of the host pipe and at the lateral connections. Traditionally, rehabilitated pipes were exclusively inspected by closed-circuit television (CCTV) cameras; however, focused electrode leak location (FELL) equipment is now a recommended guideline to test the permeability of liners, service reinstatement, and manhole connections, in accordance with ASTM F2550-13, Standard Practice for Locating Leaks in Sewer Pipes By Measuring the Variation of Electric Current Flow Through the Pipe Wall and 7th Edition, Volume 1, Operation and Maintenance of Wastewater Collection Systems manual, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:''''''''''''}.mw-parser-output .citation .cs1-lock-free a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url('//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png')no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}ISBN 978-1-59371-066-8. In 1971, Eric Wood implemented the first cured-in-place pipe technology in London, England. He called the CIPP process insitu form, derived from the Latin meaning 'form in place'. Wood applied for U.S. patent no. 4009063 on January 29, 1975. The patent was granted February 22, 1977, and was commercialized by Insituform Technologies until it entered the public domain on February 22, 1994. The process began to be used in residential and commercial applications in Japan and Europe in the 1970s and for residential application in the United States in the 1980s.

[ "Trenchless technology" ]
Parent Topic
Child Topic
    No Parent Topic