language-icon Old Web
English
Sign In

Adaptive stepsize

In numerical analysis, some methods for the numerical solution of ordinary differential equations (including the special case of numerical integration) use an adaptive stepsize in order to control the errors of the method and to ensure stability properties such as A-stability. Using an adaptive stepsize is of particular importance when there is a large variation in the size of the derivative. For example, when modeling the motion of a satellite about the earth as a standard Kepler orbit, a fixed time-stepping method such as the Euler method may be sufficient. However things are more difficult if one wishes to model the motion of a spacecraft taking into account both the Earth and the Moon as in the Three-body problem. There, scenarios emerge where one can take large time steps when the spacecraft is far from the Earth and Moon, but if the spacecraft gets close to colliding with one of the planetary bodies, then small time steps are needed. Romberg's method and Runge–Kutta–Fehlberg are examples of a numerical integration methods which use an adaptive stepsize. In numerical analysis, some methods for the numerical solution of ordinary differential equations (including the special case of numerical integration) use an adaptive stepsize in order to control the errors of the method and to ensure stability properties such as A-stability. Using an adaptive stepsize is of particular importance when there is a large variation in the size of the derivative. For example, when modeling the motion of a satellite about the earth as a standard Kepler orbit, a fixed time-stepping method such as the Euler method may be sufficient. However things are more difficult if one wishes to model the motion of a spacecraft taking into account both the Earth and the Moon as in the Three-body problem. There, scenarios emerge where one can take large time steps when the spacecraft is far from the Earth and Moon, but if the spacecraft gets close to colliding with one of the planetary bodies, then small time steps are needed. Romberg's method and Runge–Kutta–Fehlberg are examples of a numerical integration methods which use an adaptive stepsize. For simplicity, the following example uses the simplest integration method, the Euler method; in practice, higher-order methods such as Runge–Kutta methods are preferred due to their superior convergence and stability properties.

[ "Ordinary differential equation", "Numerical stability", "Numerical analysis", "Cash–Karp method" ]
Parent Topic
Child Topic
    No Parent Topic