language-icon Old Web
English
Sign In

Kimberlite

Kimberlite is an igneous rock, which sometimes contains diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat (16.70 g) diamond called the Star of South Africa in 1869 spawned a diamond rush and the digging of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error.Volcanic rocks:Subvolcanic rocks:Plutonic rocks:Picrite basaltPeridotiteBasaltDiabase (Dolerite)GabbroAndesiteMicrodioriteDioriteDaciteMicrogranodioriteGranodioriteRhyoliteMicrograniteGranite Kimberlite is an igneous rock, which sometimes contains diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat (16.70 g) diamond called the Star of South Africa in 1869 spawned a diamond rush and the digging of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error. Kimberlite occurs in the Earth's crust in vertical structures known as kimberlite pipes, as well as igneous dykes. Kimberlite also occurs as horizontal sills. Kimberlite pipes are the most important source of mined diamonds today. The consensus on kimberlites is that they are formed deep within the mantle. Formation occurs at depths between 150 and 450 kilometres (93 and 280 mi), potentially from anomalously enriched exotic mantle compositions, and they are erupted rapidly and violently, often with considerable carbon dioxide and other volatile components. It is this depth of melting and generation that makes kimberlites prone to hosting diamond xenocrysts. Despite its relative rarity, kimberlite has attracted attention because it serves as a carrier of diamonds and garnet peridotite mantle xenoliths to the Earth's surface. Its probable derivation from depths greater than any other igneous rock type, and the extreme magma composition that it reflects in terms of low silica content and high levels of incompatible trace-element enrichment, make an understanding of kimberlite petrogenesis important. In this regard, the study of kimberlite has the potential to provide information about the composition of the deep mantle and melting processes occurring at or near the interface between the cratonic continental lithosphere and the underlying convecting asthenospheric mantle. Many kimberlite structures are emplaced as carrot-shaped, vertical intrusions termed 'pipes'. This classic carrot shape is formed due to a complex intrusive process of kimberlitic magma, which inherits a large proportion of CO2 (lower amounts of H2O) in the system, which produces a deep explosive boiling stage that causes a significant amount of vertical flaring. Kimberlite classification is based on the recognition of differing rock facies. These differing facies are associated with a particular style of magmatic activity, namely crater, diatreme and hypabyssal rocks. The morphology of kimberlite pipes and their classical carrot shape is the result of explosive diatreme volcanism from very deep mantle-derived sources. These volcanic explosions produce vertical columns of rock that rise from deep magma reservoirs. The morphology of kimberlite pipes is varied, but includes a sheeted dyke complex of tabular, vertically dipping feeder dykes in the root of the pipe, which extends down to the mantle. Within 1.5–2 km (0.93–1.24 mi) of the surface, the highly pressured magma explodes upwards and expands to form a conical to cylindrical diatreme, which erupts to the surface. The surface expression is rarely preserved but is usually similar to a maar volcano. Kimberlite dikes and sills can be thin (1–4 meters), while pipes range in diameter from about 75 meters to 1.5 kilometers. Two Jurassic kimberlite dikes exist in Pennsylvania. One, the Gates-Adah Dike, outcrops on the Monongahela River on the border of Fayette and Greene Counties. The other, the Dixonville-Tanoma Dike in central Indiana County, does not outcrop at the surface and was discovered by miners. Similarly aged kimberlite is found in several locations in New York.

[ "Mantle (geology)", "Diamond", "Megacryst", "Kimberlite tailings", "Diatreme", "Knorringite", "Volcanic pipe" ]
Parent Topic
Child Topic
    No Parent Topic