language-icon Old Web
English
Sign In

Mexican wolf

The Mexican wolf (Canis lupus baileyi), also known as the lobo, is a subspecies of gray wolf once native to southeastern Arizona, southern New Mexico, western Texas and northern Mexico. It is the smallest of North America's gray wolves, and is similar to C. l. nubilus, though it is distinguished by its smaller, narrower skull and its darker pelt, which is yellowish-gray and heavily clouded with black over the back and tail. Its ancestors were likely the first gray wolves to enter North America after the extinction of the Beringian wolf, as indicated by its southern range and basal physical and genetic characteristics. Though once held in high regard in Pre-Columbian Mexico, it is the most endangered gray wolf in North America, having been extirpated in the wild during the mid-1900s through a combination of hunting, trapping, poisoning and digging pups from dens. After being listed under the Endangered Species Act in 1976, the United States and Mexico collaborated to capture all lobos remaining in the wild. This extreme measure prevented the lobos' extinction. Five wild Mexican wolves (four males and one pregnant female) were captured alive in Mexico from 1977 to 1980 and used to start a captive breeding program. From this program, captive-bred Mexican wolves were released into recovery areas in Arizona and New Mexico beginning in 1998 in order to assist the animals' recolonization of their former historical range. As of 2017, there are 143 Mexican wolves living wild and 240 in captive breeding programs. The Mexican wolf was first described as a distinct subspecies in 1929 by Edward Nelson and Edward Goldman on account of its small size, narrow skull and dark pelt. This wolf is recognized as a subspecies of Canis lupus in the taxonomic authority Mammal Species of the World (2005). In 2019, a literature review of previous studies was undertaken by the National Academies of Sciences, Engineering, and Medicine. The position of the National Academies is that the historic population of Mexican wolf represents a distinct evolutionary lineage of gray wolf, and that modern Mexican wolves are their direct descendants. It is a valid taxonomic subspecies classified as Canis lupus baileyi. Gray wolves (Canis lupus) migrated from Eurasia into North America 70,000–23,000 years ago and gave rise to at least two morphologically and genetically distinct groups. One group is represented by the extinct Beringian wolf and the other by the modern populations. One author proposes that the Mexican wolf's ancestors were likely the first gray wolves to cross the Bering Land Bridge into North America during the Late Pleistocene after the extinction of the Beringian wolf, colonizing most of the continent until pushed southwards by the newly arrived ancestors of C. l. nubilus. A haplotype is a group of genes found in an organism that are inherited together from one of their parents. Mitochondrial DNA (mDNA) passes along the maternal line and can date back thousands of years. A 2005 study compared the mitochondrial DNA sequences of modern wolves with those from thirty-four specimens dated between 1856 and 1915. The historic population was found to possess twice the genetic diversity of modern wolves, which suggests that the mDNA diversity of the wolves eradicated from the western US was more than twice that of the modern population. Some haplotypes possessed by the Mexican wolf, the extinct Great Plains wolf, and the extinct Southern Rocky Mountain wolf were found to form a unique 'southern clade'. All North American wolves group together with those from Eurasia, except for the southern clade which form a group exclusive to North America. The wide distribution area of the southern clade indicates that gene flow was extensive across the recognized limits of its subspecies. In 2016, a study of mitochondrial DNA sequences of both modern and ancient wolves generated a phylogenetic tree which indicated that the two most basal North American haplotypes included the Mexican wolf and the Vancouver Island wolf. In 2018, a study looked at the limb morphology of modern and fossil North American wolves. The major limb bones of the dire wolf, Beringian wolf, and most modern North American gray wolves can be clearly distinguished from one another. Late Pleistocene wolves on both sides of the Laurentide Ice Sheet — Cordilleran Ice Sheet possessed shorter legs when compared with most modern wolves. The Late Pleistocene wolves from the Natural Trap Cave, Wyoming and Rancho La Brea, southern California were similar in limb morphology to the Beringian wolves of Alaska. Modern wolves in the Midwestern USA and northwestern North America possess longer legs that evolved during the Holocene, possibly driven by the loss of slower prey. However, shorter legs survived well into the Holocene after the extinction of much of the Pleistocene megafauna, including the Beringian wolf. Holocene wolves from Middle Butte Cave (dated less than 7,600 YBP) and Moonshiner Cave (dated over 3,000 YBP) in Bingham County, Idaho were similar to the Beringian wolves. The Mexican wolf and pre-1900 samples of the Great Plains wolf (Canis lupus nubilus) resembled the Late Pleistocene and Holocene fossil gray wolves due to their shorter legs.

[ "Endangered species", "Systemic lupus erythematosus" ]
Parent Topic
Child Topic
    No Parent Topic