language-icon Old Web
English
Sign In

Arrangement of hyperplanes

In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice.The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These subspaces are called the flats of A. The intersection semilattice L(A) is partially ordered by reverse inclusion. In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice.The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These subspaces are called the flats of A. The intersection semilattice L(A) is partially ordered by reverse inclusion. If the whole space S is 2-dimensional, the hyperplanes are lines; such an arrangement is often called an arrangement of lines. Historically, real arrangements of lines were the first arrangements investigated. If S is 3-dimensional one has an arrangement of planes. The intersection semilattice L(A) is a meet semilattice and more specifically is a geometric semilattice. If the arrangement is linear or projective, or if the intersection of all hyperplanes is nonempty, the intersection lattice is a geometric lattice.(This is why the semilattice must be ordered by reverse inclusion—rather than by inclusion, which might seem more natural but would not yield a geometric (semi)lattice.) When L(A) is a lattice, the matroid of A, written M(A), has A for its ground set and has rank function r(S) := codim(I), where S is any subset of A and I is the intersection of the hyperplanes in S. In general, when L(A) is a semilattice, there is an analogous matroid-like structure called a semimatroid, which is a generalization of a matroid (and has the same relationship to the intersection semilattice as does the matroid to the lattice in the lattice case), but is not a matroid if L(A) is not a lattice. For a subset B of A, let us define f(B) := the intersection of the hyperplanes in B; this is S if B is empty. The characteristic polynomial of A, written pA(y), can be defined by summed over all subsets B of A except, in the affine case, subsets whose intersection is empty. (The dimension of the empty set is defined to be −1.) This polynomial helps to solve some basic questions; see below.Another polynomial associated with A is the Whitney-number polynomial wA(x, y), defined by summed over B ⊆ C ⊆ A such that f(B) is nonempty. Being a geometric lattice or semilattice, L(A) has a characteristic polynomial, pL(A)(y), which has an extensive theory (see matroid). Thus it is good to know that pA(y) = yi pL(A)(y), where i is the smallest dimension of any flat, except that in the projective case it equals yi + 1pL(A)(y). The Whitney-number polynomial of A is similarly related to that of L(A). (The empty set is excluded from the semilattice in the affine case specifically so that these relationships will be valid.) The intersection semilattice determines another combinatorial invariant of the arrangement, the Orlik–Solomon algebra. To define it, fix a commutative subring K of the base field and form the exterior algebra E of the vector space

[ "Hyperplane" ]
Parent Topic
Child Topic
    No Parent Topic