language-icon Old Web
English
Sign In

Model output statistics

Model Output Statistics (MOS) is a multiple linear regression technique in which predictands, often near-surface quantities, such as 2-meter (AGL) air temperature, horizontal visibility, and wind direction, speed and gusts, are related statistically to one or more predictors. The predictors are typically forecasts from a numerical weather prediction (NWP) model, climatic data, and, if applicable, recent surface observations. Thus, output from NWP models can be transformed by the MOS technique into sensible weather parameters that are familiar to the 'person on the street'. Model Output Statistics (MOS) is a multiple linear regression technique in which predictands, often near-surface quantities, such as 2-meter (AGL) air temperature, horizontal visibility, and wind direction, speed and gusts, are related statistically to one or more predictors. The predictors are typically forecasts from a numerical weather prediction (NWP) model, climatic data, and, if applicable, recent surface observations. Thus, output from NWP models can be transformed by the MOS technique into sensible weather parameters that are familiar to the 'person on the street'. Output directly from the NWP model's lowest layer(s) generally is not used by forecasters because the actual physical processes that occur within the Earth's boundary layer are crudely approximated in the model (i.e., physical parameterizations) along with its relatively coarse horizontal resolution. Because of this lack of fidelity and its imperfect initial state, forecasts of near-surface quantities obtained directly from the model are subject to systematic (bias) and random model errors, which tend to grow with time. In the development of MOS equations, past observations and archived NWP model forecast fields are used with a screening regression to determine the 'best' predictors and their coefficients for a particular predictand and forecast time. By using archived model forecast output along with verifying surface observations, the resulting equations implicitly take into account physical effects and processes which the underlying numerical weather prediction model cannot explicitly resolve, resulting in much better forecasts of sensible weather quantities. In addition to correcting systematic errors, MOS can produce reliable probabilities of weather events from a single model run. In contrast, despite the enormous amount of computing resources devoted to generating them, ensemble model forecasts' relative frequency of events—often used as a proxy for probability—do not exhibit useful reliability. Thus, ensemble NWP model output also requires additional post-processing in order to obtain reliable probabilistic forecasts, using methods such as Nonhomogeneous Gaussian regression or other methods. MOS was conceived and planning for its use began within the U.S. National Weather Service’s (NWS’s) Techniques Development Laboratory (TDL) in 1965 and forecasts first issued from it in 1968. Since then, TDL, now the Meteorological Development Laboratory (MDL), continued to create, refine and update MOS equation sets as additional NWP models were developed and made operational at the National Meteorological Center (NMC) and then the Environmental Modeling Center or EMC. Given its multi-decadal history within the U.S. NWS and its continuous improvement and superior skill over direct NWP model output, MOS guidance is still one of the most valuable forecast tools used by forecasters within the agency. Currently there are eight sets of MOS guidance available from MDL, operational and experimental, covering the span of time from the next hour out to 10 days for the United States and most of its territories. Nested Grid Model MOS was discontinued in 2009. Initially, MOS guidance was developed for airports and other fixed locales where METARs (or similar reports) were routinely issued. Therefore, MOS guidance was and continues to be provided in an alphanumeric 'bulletin' format for these locations. Here is an example of a short-range MOS forecast for Clinton-Sherman Airport, Oklahoma (KCSM) based on the EMC's Global Forecast System model output. The short-range GFS MOS bulletin is described here.

[ "Weather Research and Forecasting Model", "Weather forecasting", "Numerical weather prediction", "Rapid update cycle", "Navy Global Environmental Model", "Prognostic chart", "Environmental Modeling Center", "Surface weather analysis" ]
Parent Topic
Child Topic
    No Parent Topic