language-icon Old Web
English
Sign In

Socio-hydrology

Socio-hydrology; socio (from the Latin word socius, meaning ‘companion) and hydrology (from the Greek: ὕδωρ, 'hýdōr' meaning 'water'; and λόγος, 'lógos' meaning 'study') is an interdisciplinary field studying the dynamic interactions and feedbacks between water and people. Areas of research in socio-hydrology include the historical study of the interplay between hydrological and social processes, comparative analysis of the co-evolution and self-organization of human and water systems in different cultures, and process-based modelling of coupled human-water systems. Furthermore, socio-hydrology has been presented as one of the most relevant challenges for the Anthropocene, in relationship with its aims at unraveling dynamic cross-scale interactions and feedbacks between natural and human processes that give rise to many water sustainability challenges. Socio‐hydrology is also predicted to be an important license for modellers. Socio-hydrology; socio (from the Latin word socius, meaning ‘companion) and hydrology (from the Greek: ὕδωρ, 'hýdōr' meaning 'water'; and λόγος, 'lógos' meaning 'study') is an interdisciplinary field studying the dynamic interactions and feedbacks between water and people. Areas of research in socio-hydrology include the historical study of the interplay between hydrological and social processes, comparative analysis of the co-evolution and self-organization of human and water systems in different cultures, and process-based modelling of coupled human-water systems. Furthermore, socio-hydrology has been presented as one of the most relevant challenges for the Anthropocene, in relationship with its aims at unraveling dynamic cross-scale interactions and feedbacks between natural and human processes that give rise to many water sustainability challenges. Socio‐hydrology is also predicted to be an important license for modellers. In traditional hydrology, human activities are typically described as boundary conditions, or external forcings, to the water systems (scenario-based approach). This traditional approach tends to make long term predictions unrealistic as interactions and bi-directional feedbacks between human and water systems cannot be captured. Following the increased hydrological challenges due to human-induced changes, hydrologists started to overcome the limitation of traditional hydrology by accounting for the mutual interactions between water and society and by advocating for greater connection between social science and hydrology. Socio-hydrologists argue that water and human systems change interdependently as well as in connection with each other and that their mutual reshaping continues and evolves over time. On the one hand, society importantly alters the hydrological regime. It modifies the frequency and severity of floods and droughts through continuous water abstraction, dams and reservoirs construction, flood protection measures, urbanization, etc. In turn, modified water regimes and hydrological extremes shape societies which respond and adapt spontaneously or through collective strategies. In general, to explain the co-evolution of human and water systems, socio-hydrology should draw on different disciplines and include historical studies, comparative analysis and process based modeling. Most of the socio-hydrological efforts to date have focused on investigating recurring social behavior and societal development resulting from their coevolution with hydrological systems. The majority of these studies have explained coupled human and water systems through quantitative approaches and dedicated efforts to capture human-water interactions and feedback through mathematical model, mostly as non-linear differential equations. Building dams and reservoirs is one of the most common approaches to cope with drought and water shortage. The aim is straightforward: reservoirs can store water during wet periods, and then release it during dry periods. As such, they can stabilise water availability, thereby satisfying water demand and alleviating water shortage. However, increasing reservoir storage capacity can also lead to unintended effects in the long term, and, paradoxically, worsen water scarcity. Evidence has shown that water supply leads to higher water demand, which can quickly offset the initial benefits of reservoirs. These cycles can be seen as a rebound effect, also known in environmental economics as Jevon's paradox: as more water is available, water consumption tends to increase. This can result in a vicious cycle: a new water shortage can be addressed by further expansion of reservoir storage to increase water availability, which enables more water consumption, which then can potentially lead to conditions of water scarcity. As such, the supply-demand cycle can trigger an accelerating spiral towards unsustainable exploitation of water resources and environmental degradation. Over-reliance on reservoirs can increase the potential damage caused by drought and water shortage. The expansion of reservoirs often reduces incentives for individuals preparedness and adaptive actions, thus increasing the negative impacts of water shortage. Moreover, extended periods of abundant water supply, supported by reservoirs, can generate higher dependence on water resources, which in turn increases social vulnerability and economic damage when water shortage eventually occurs. Attempts to increase water supply to cope with growing water demand, which is fuelled by the increase in supply, has been shown to be unsustainable. Drought occurrences can trigger temporary reductions of water availability, often leading to water shortage when water demand cannot be satisfied by the available water.

[ "Catchment hydrology", "Urban Hydrology", "watershed hydrology", "Water resources" ]
Parent Topic
Child Topic
    No Parent Topic