language-icon Old Web
English
Sign In

Biomimetics

Biomimetics or biomimicry is the imitation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms 'biomimetics' and 'biomimicry' derive from Ancient Greek: βίος (bios), life, and μίμησις (mīmēsis), imitation, from μιμεῖσθαι (mīmeisthai), to imitate, from μῖμος (mimos), actor. A closely related field is bionics.Biophysics is not so much a subject matter as it is a point of view. It is an approach to problems of biological science utilizing the theory and technology of the physical sciences. Conversely, biophysics is also a biologist's approach to problems of physical science and engineering, although this aspect has largely been neglected.Let us consider what bionics has come to mean operationally and what it or some word like it (I prefer biomimetics) ought to mean in order to make good use of the technical skills of scientists specializing, or rather, I should say, despecializing into this area of research. Biomimetics or biomimicry is the imitation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms 'biomimetics' and 'biomimicry' derive from Ancient Greek: βίος (bios), life, and μίμησις (mīmēsis), imitation, from μιμεῖσθαι (mīmeisthai), to imitate, from μῖμος (mimos), actor. A closely related field is bionics. Living organisms have evolved well-adapted structures and materials over geological time through natural selection. Biomimetics has given rise to new technologies inspired by biological solutions at macro and nanoscales. Humans have looked at nature for answers to problems throughout our existence. Nature has solved engineering problems such as self-healing abilities, environmental exposure tolerance and resistance, hydrophobicity, self-assembly, and harnessing solar energy. One of the early examples of would-be biomimicry was the study of birds to enable human flight. Although never successful in creating a 'flying machine', Leonardo da Vinci (1452–1519) was a keen observer of the anatomy and flight of birds, and made numerous notes and sketches on his observations as well as sketches of 'flying machines'. The Wright Brothers, who succeeded in flying the first heavier-than-air aircraft in 1903, allegedly derived inspiration from observations of pigeons in flight. During the 1950s the American biophysicist and polymath Otto Schmitt developed the concept of 'biomimetics'. During his doctoral research he developed the Schmitt trigger by studying the nerves in squid, attempting to engineer a device that replicated the biological system of nerve propagation. He continued to focus on devices that mimic natural systems and by 1957 he had perceived a converse to the standard view of biophysics at that time, a view he would come to call biomimetics..mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0} In 1960 Jack E. Steele coined a similar term, bionics, at Wright-Patterson Air Force Base in Dayton, Ohio, where Otto Schmitt also worked. Steele defined bionics as 'the science of systems which have some function copied from nature, or which represent characteristics of natural systems or their analogues'. During a later meeting in 1963 Schmitt stated, In 1969, Schmitt used the term “biomimetic“ in the title one of his papers, and by 1974 it had found its way into Webster's Dictionary, bionics entered the same dictionary earlier in 1960 as 'a science concerned with the application of data about the functioning of biological systems to the solution of engineering problems'. Bionic took on a different connotation when Martin Caidin referenced Jack Steele and his work in the novel Cyborg which later resulted in the 1974 television series The Six Million Dollar Man and its spin-offs. The term bionic then became associated with 'the use of electronically operated artificial body parts' and 'having ordinary human powers increased by or as if by the aid of such devices'. Because the term bionic took on the implication of supernatural strength, the scientific community in English speaking countries largely abandoned it. The term biomimicry appeared as early as 1982. Biomimicry was popularized by scientist and author Janine Benyus in her 1997 book Biomimicry: Innovation Inspired by Nature. Biomimicry is defined in the book as a 'new science that studies nature's models and then imitates or takes inspiration from these designs and processes to solve human problems'. Benyus suggests looking to Nature as a 'Model, Measure, and Mentor' and emphasizes sustainability as an objective of biomimicry. Biomimetics could in principle be applied in many fields. Because of the diversity and complexity of biological systems, the number of features that might be imitated is large. Biomimetic applications are at various stages of development from technologies that might become commercially usable to prototypes. Murray's law, which in conventional form determined the optimum diameter of blood vessels, has been re-derived to provide simple equations for the pipe or tube diameter which gives a minimum mass engineering system. Aircraft wing design and flight techniques are being inspired by birds and bats. Biorobots based on the physiology and methods of locomotion of animals include BionicKangaroo which moves like a kangaroo, saving energy from one jump and transferring it to its next jump. Kamigami Robots, a children's toy, mimic cockroach locomotion to run quickly and efficiently over indoor and outdoor surfaces.

[ "Artificial intelligence", "Nanotechnology", "biomimetic design", "Bioinspiration" ]
Parent Topic
Child Topic
    No Parent Topic