language-icon Old Web
English
Sign In

Inerting system

An inerting system decreases the probability of combustion of flammable materials stored in a confined space, especially a fuel tank, by maintaining a chemically non-reactive or 'inert' gas, such as nitrogen, in such a space. 'Inerted' fuel tanks may be used on land, or aboard ships or aircraft. Three elements are required to initiate and sustain combustion: an ignition source (heat), fuel and oxygen. Combustion may be prevented by reducing any one of these three elements. If the presence of an ignition source can not be prevented within a fuel tank, then the tank may be made non-ignitable by: At present, flammable vapors in fuel tanks are rendered inert by replacing the air in the tank with an inert gas, such as nitrogen, nitrogen enriched air, steam or carbon dioxide. This reduces the oxygen concentration of the ullage to below the combustion threshold. Alternate methods based on reducing the ullage fuel-air ratio to below the LFL or increasing the fuel-air ratio to above the UFL have also been proposed. Oil tankers fill the empty space above the oil cargo with inert gas to prevent fire or explosion of hydrocarbon vapors. Oil vapors cannot burn in air with less than 11% oxygen content. The inert gas may be supplied by cooling and scrubbing the flue gas produced by the ship's boilers. Where diesel engines are used, the exhaust gas may contain too much oxygen so fuel-burning inert gas generators may be installed. One-way valves are installed in process piping to the tanker spaces to prevent volatile hydrocarbon vapors or mist from entering other equipment. Inert gas systems have been required on oil tankers since the SOLAS regulations of 1974. The International Maritime Organization (IMO) publishes technical standard IMO-860 describing the requirements for inert gas systems. Other types of cargo such as bulk chemicals may also be carried in inerted tanks, but the inerting gas must be compatible with the chemicals used. Fuel tanks for combat aircraft have long been inerted, as well as self-sealing, but those for transport aircraft, both military and civilian, have not, largely due to cost and weight considerations. Early uses using nitrogen were on the Handley Page Halifax III and VIII, Short Stirling, and Avro Lincoln B.II, which incorporated inerting systems from around 1944. Cleve Kimmel first proposed an inerting system to passenger airlines in the early 1960s. His proposed system for passenger aircraft would have used nitrogen. However, the US Federal Aviation Administration (FAA) refused to consider Kimmel's system after the airlines complained it was impractical. Indeed, early versions of Kimmel's system weighed 2,000 pounds—which would have probably made an aircraft too heavy to fly with passengers on it. However, the FAA did almost no research into making fuel tanks inert for 40 years, even in the face of several catastrophic fuel tank explosions. Instead, the FAA focused on keeping ignition sources out of the fuel tanks. The FAA did not consider lightweight inerting systems for commercial jets until the 1996 crash of TWA Flight 800. The crash was blamed on an explosion in the center wing fuel tank of the Boeing 747 used in the flight. This tank is normally used only on very long flights, and little fuel was present in the tank at the time of the explosion. A small amount of fuel in a tank is more dangerous than a large amount, since heat entering the fuel tank with residual fuel causes the fuel to increase in temperature faster and evaporate. This causes the ullage fuel-to-air ratio to increase rapidly and exceed the lower flammability limit. A large quantity of fuel (high mass loading) in the fuel tank can retain the heat energy and slow the fuel evaporation rate. The explosion of a Thai Airways International Boeing 737 in 2001 and a Philippine Airlines 737 in 1990 also occurred in a tank that had residual fuel. The above three explosions occurred on a warm day, in the center wing tank (CWT) that is within the contours of the fuselage. These fuel tanks are located in the vicinity of external equipment that inadvertently heats the fuel tanks. The National Transportation Safety Board's (NTSB) final report on the crash of the TWA 747 concluded “The fuel air vapor in the ullage of the TWA flight 800 CWT was flammable at the time of the accident.” NTSB identified “Elimination of Explosive Mixture in Fuel tanks in Transport Category Aircraft” as Number 1 item on its Most Wanted List in 1997.

[ "Fuel tank", "Inert gas", "Nitrogen", "Oxygen" ]
Parent Topic
Child Topic
    No Parent Topic