Cyanide poisoning is poisoning that results from exposure to a number of forms of cyanide. Early symptoms include headache, dizziness, fast heart rate, shortness of breath, and vomiting. This may then be followed by seizures, slow heart rate, low blood pressure, loss of consciousness, and cardiac arrest. Onset of symptoms is usually within a few minutes. If a person survives, there may be long-term neurological problems.Cyanide binds avidly to methemoglobin, forming cyanmethemoglobin, thus releasing cyanide from cytochrome oxidase. Treatment with nitrites is not innocuous as methemoglobin cannot carry oxygen, and severe methemoglobinemia may need to be treated in turn with methylene blue.A different cyanide-metabolizing pathway, 3-mercaptopyruvate sulfurtransferase (3-MPST, EC 2.8.1.2), which is more widely distributed in mammalian tissues than rhodanese, is being explored. 3-MPST converts cyanide to thiocyanate, using the cysteine catabolite, 3-mercaptopyruvate (3-MP). However, 3-MP is extremely unstable chemically. Therefore, a prodrug, sulfanegen sodium (2, 5-dihydroxy-1,4-dithiane-2,5-dicarboxylic acid disodium salt), which hydrolyzes into 2 molecules of 3-MP after being administered orally or parenterally, is being evaluated in animal models.The International Programme on Chemical Safety issued a survey (IPCS/CEC Evaluation of Antidotes Series) that lists the following antidotal agents and their effects: oxygen, sodium thiosulfate, amyl nitrite, sodium nitrite, 4-dimethylaminophenol, hydroxocobalamin, and dicobalt edetate ('Kelocyanor'), as well as several others. Other commonly-recommended antidotes are 'solutions A and B' (a solution of ferrous sulfate in aqueous citric acid, and aqueous sodium carbonate, respectively) and amyl nitrite. Cyanide poisoning is poisoning that results from exposure to a number of forms of cyanide. Early symptoms include headache, dizziness, fast heart rate, shortness of breath, and vomiting. This may then be followed by seizures, slow heart rate, low blood pressure, loss of consciousness, and cardiac arrest. Onset of symptoms is usually within a few minutes. If a person survives, there may be long-term neurological problems. Toxic cyanide-containing compounds include hydrogen cyanide gas and a number of cyanide salts. Poisoning is relatively common following breathing in smoke from a house fire. Other potential routes of exposure include workplaces involved in metal polishing, certain insecticides, the medication nitroprusside, and certain seeds such as those of apples and apricots. Liquid forms of cyanide can be absorbed through the skin. Cyanide ions interfere with cellular respiration, resulting in the body's tissues being unable to use oxygen. Diagnosis is often difficult. It may be suspected in a person following a house fire who has a decreased level of consciousness, low blood pressure, or high blood lactate. Blood levels of cyanide can be measured but take time. Levels of 0.5–1 mg/L are mild, 1–2 mg/L are moderate, 2–3 mg/L are severe, and greater than 3 mg/L generally result in death. If exposure is suspected, the person should be removed from the source of exposure and decontaminated. Treatment involves supportive care and giving the person 100% oxygen. Hydroxocobalamin (vitamin B12a) appears to be useful as an antidote and is generally first-line. Sodium thiosulphate may also be given. Historically cyanide has been used for mass suicide and by the Nazis for genocide. If cyanide is inhaled it can cause a coma with seizures, apnea, and cardiac arrest, with death following in a matter of seconds. At lower doses, loss of consciousness may be preceded by general weakness, giddiness, headaches, vertigo, confusion, and perceived difficulty in breathing. At the first stages of unconsciousness, breathing is often sufficient or even rapid, although the state of the person progresses towards a deep coma, sometimes accompanied by pulmonary edema, and finally cardiac arrest. A cherry red skin color that changes to dark may be present as the result of increased venous hemoglobin oxygen saturation. Despite the similar name, cyanide does not directly cause cyanosis. A fatal dose for humans can be as low as 1.5 mg/kg body weight. Exposure to lower levels of cyanide over a long period (e.g., after use of improperly processed cassava roots as a primary food source in tropical Africa) results in increased blood cyanide levels, which can result in weakness and a variety of symptoms, including permanent paralysis, nervous lesions, hypothyroidism, and miscarriages. Other effects include mild liver and kidney damage. Acute hydrogen cyanide poisoning can result from inhalation of fumes from burning polymer products that use nitriles in their production, such as polyurethane, or vinyl. It can also be caused by breakdown of nitroprusside into nitric oxide and cyanide. Nitroprusside may be used during treatment of hypertensive crisis. In addition to its uses as a pesticide and insecticide, cyanide is contained in tobacco smoke and smoke from building fires, and is present in many seeds or kernels such as those of almonds, apricots, apples, oranges, and in foods including cassava (also known as yuca or manioc), and bamboo shoots. Vitamin B12, in the form of hydroxocobalamin (also spelled hydroxycobalamin), may reduce the negative effects of chronic exposure, and a deficiency can lead to negative health effects following exposure. Cyanide poisoning is a form of histotoxic hypoxia because the cells of an organism are unable to create ATP, primarily through the inhibition of the mitochondrial enzyme cytochrome c oxidase. Cyanide is quickly metabolized to 2-amino-2-thiazoline-4-carboxylic acid and thiocyanate with a half life of 10–30 minutes as a detoxifying mechanism. Within a few hours of single ingestion, no cyanide can be detected, since all of it is metabolized unless death occurs first. Thiocyanate has a long half life of >24hrs, and is typically eliminated through the kidneys. Thiocyanate possesses ~0.01 the toxicity of the cyanide parent molecule.