language-icon Old Web
English
Sign In

Small-world network

A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the clustering coefficient is not small. In the context of a social network, this results in the small world phenomenon of strangers being linked by a short chain of acquaintances. Many empirical graphs show the small-world effect, including social networks, wikis such as Wikipedia, gene networks, and even the underlying architecture of the Internet. It is the inspiration for many network-on-chip architectures in contemporary computer hardware. A certain category of small-world networks were identified as a class of random graphs by Duncan Watts and Steven Strogatz in 1998. They noted that graphs could be classified according to two independent structural features, namely the clustering coefficient, and average node-to-node distance (also known as average shortest path length). Purely random graphs, built according to the Erdős–Rényi (ER) model, exhibit a small average shortest path length (varying typically as the logarithm of the number of nodes) along with a small clustering coefficient. Watts and Strogatz measured that in fact many real-world networks have a small average shortest path length, but also a clustering coefficient significantly higher than expected by random chance. Watts and Strogatz then proposed a novel graph model, currently named the Watts and Strogatz model, with (i) a small average shortest path length, and (ii) a large clustering coefficient. The crossover in the Watts–Strogatz model between a 'large world' (such as a lattice) and a small world was first described by Barthelemy and Amaral in 1999. This work was followed by a large number of studies, including exact results (Barrat and Weigt, 1999; Dorogovtsev and Mendes; Barmpoutis and Murray, 2010). Braunstein found that for weighted ER networks where the weights have a very broad distribution, the optimal path scales becomes significantly longer and scales as N1/3. Small-world networks tend to contain cliques, and near-cliques, meaning sub-networks which have connections between almost any two nodes within them. This follows from the defining property of a high clustering coefficient. Secondly, most pairs of nodes will be connected by at least one short path. This follows from the defining property that the mean-shortest path length be small. Several other properties are often associated with small-world networks. Typically there is an over-abundance of hubs – nodes in the network with a high number of connections (known as high degree nodes). These hubs serve as the common connections mediating the short path lengths between other edges. By analogy, the small-world network of airline flights has a small mean-path length (i.e. between any two cities you are likely to have to take three or fewer flights) because many flights are routed through hub cities. This property is often analyzed by considering the fraction of nodes in the network that have a particular number of connections going into them (the degree distribution of the network). Networks with a greater than expected number of hubs will have a greater fraction of nodes with high degree, and consequently the degree distribution will be enriched at high degree values. This is known colloquially as a fat-tailed distribution. Graphs of very different topology qualify as small-world networks as long as they satisfy the two definitional requirements above. Network small-worldness has been quantified by a small-coefficient, σ {displaystyle sigma } , calculated by comparing clustering and path length of a given network to an equivalent random network with same degree on average. Another method for quantifying network small-worldness utilizes the original definition of the small-world network comparing the clustering of a given network to an equivalent lattice network and its path length to an equivalent random network. The small-world measure ( ω {displaystyle omega } ) is defined as Where the characteristic path length L and clustering coefficient C are calculated from the network you are testing, Cℓ is the clustering coefficient for an equivalent lattice network and Lr is the characteristic path length for an equivalent random network. Still another method for quantifying small-worldness normalizes both the network's clustering and path length relative to these characteristics in equivalent lattice and random networks. The Small World Index (SWI) is defined as Both ω′ and SWI range between 0 and 1, and have been shown to capture aspects of small-worldness. However, they adopt slightly different conceptions of ideal small-worldness. For a given set of constraints (e.g. size, density, degree distribution), there exists a network for which ω′ = 1, and thus ω aims to capture the extent to which a network with given constraints as small worldly as possible. In contrast, there may not exist a network for which SWI = 1, the thus SWI aims to capture the extent to which a network with given constraints approaches the theoretical small world ideal of a network where C ≈ Cℓ and L ≈ Lr.

[ "Complex network", "Watts and Strogatz model" ]
Parent Topic
Child Topic
    No Parent Topic