language-icon Old Web
English
Sign In

Pursuit predation

Pursuit predation is a form of predation in which predators give chase to fleeing prey. The chase can be initiated either by the predator or by the prey, should the prey be alerted to a predator's presence and attempt to flee before the predator gives chase. The chase ends when either the predator captures and consumes the prey, or the prey escapes. Pursuit predation is typically observed in carnivorous species within the kingdom Animalia, with some iconic examples being cheetahs, lions, and wolves. Pursuit predation is a form of predation in which predators give chase to fleeing prey. The chase can be initiated either by the predator or by the prey, should the prey be alerted to a predator's presence and attempt to flee before the predator gives chase. The chase ends when either the predator captures and consumes the prey, or the prey escapes. Pursuit predation is typically observed in carnivorous species within the kingdom Animalia, with some iconic examples being cheetahs, lions, and wolves. Pursuit predation is an alternate predation strategy to ambush predation. While pursuit predators use a detection and pursuit phase in order to obtain prey, ambush predators use stealth to capture prey. Strength and speed are important to pursuit predators, whereas ambush predators ignore these in favor of surprise from a typically concealed location. While the two patterns of predation are not mutually exclusive, morphological differences in body plan can create a bias in an organism towards each type of predation. One particular form of pursuit predation is persistence hunting, and some animals are examples of both types of predator. There is still uncertainty as to whether predators behave with a general tactic or strategy while preying. However, among pursuit predators, there are several common behaviors. Often, predators will scout potential prey, assessing prey quantity and density prior to engaging in a pursuit. Certain predators choose to pursue prey primarily in a group of conspecifics; such animals are known as pack hunters or group pursuers. Other species choose to hunt alone. These two behaviors are typically due to differences in hunting success, where some groups are very successful in groups and others are more successful alone. Pursuit predators may also choose to either exhaust their metabolic resources rapidly or pace themselves during a chase. This choice can be influenced by prey species, seasonal settings, or temporal settings. Predators that rapidly exhaust their metabolic resources during a chase tend to first stalk their prey, slowly approaching their prey to decrease chase distance and time. When the predator is at a closer distance (one that would lead to easier prey capture), it finally gives chase. Pacing pursuit is more commonly seen in group pursuit, as individual animals do not need to exert as much energy to capture prey. However, this type of pursuit requires group coordination, which may have varying degrees of success. Since groups can engage in longer chases, they often focus on separating a weaker or slower prey item during pursuit. Morphologically speaking, while ambush predation requires stealth, pursuit predation requires speed; pursuit predators are proportionally long-limbed and equipped with cursorial adaptations. Current theories suggest that this proportionally long-limbed approach to body plan was an evolutionary countermeasure to prey adaptation. Group pursuers hunt with a collection of conspecifics. Group pursuit is usually seen in species of relatively high sociality; in vertebrates, individuals often seem to have defined roles in pursuit. African wild dog (Lycaon pictus) packs have been known to split into several smaller groups while in pursuit; one group initiates the chase, while the other travels ahead of the prey's escape path. The group of chase initiators coordinate their chase to lead the prey towards the location of the second group, where the prey's escape path will be effectively cut off. Bottlenose dolphins (Tursiops) have been shown exhibiting similar behaviors of pursuit role specialization. One group within the dolphin pod, known as the drivers, give chase to the fish - forcing the fish into a tight circle formation, while the other group of the pod, the barriers, approach the fish from the opposite direction. This two-pronged attack leaves the fish with only the option of jumping out of the water to escape the dolphins. However, the fish are completely vulnerable in the air; it is at this point when the dolphins leap out and catch the fish. In lion (Panthera leo) pack hunting, each member of the hunting group is assigned a position, from left wing to right wing, in order to better obtain prey. Such specializations in roles within the group are thought to increase sophistication in technique; lion wing members are faster, and will drive prey toward the center where the larger, stronger, killing members of the pride will take down the prey. Many observations of group pursuers note an optimal hunting size in which certain currencies (mass of prey killed or number of prey killed) are maximized with respect to costs (kilometers covered or injuries sustained). Groups size is often dependent on aspects of the environment: number of prey, prey density, number of competitors, seasonal changes, etc. While birds are generally believed to be individual hunters, there are a few examples of birds that cooperate during pursuits. Harris's hawks (Parabuteo unicinctus) have two cooperative strategies for hunting: Surrounding and cover penetration, and long chase relay attack. The first strategy involves a group of hawks surrounding prey hidden under some form of cover, while another hawk attempts to penetrate the prey's cover. The penetration attempt flushes the prey out from its cover where it is swiftly killed by one of the surrounding hawks. The second strategy is less commonly used: It involves a 'relay attack' in which a group of hawks, led by a 'lead' hawk, engage in a long chase for prey. The 'lead' hawk will dive in order to kill the prey. If the dive is unsuccessful, the role of the 'lead' shifts to another hawk who will then dive in another attempt to kill the prey. During one observed relay attack, 20 dives and hence 20 lead switches were exhibited.

[ "Ecology", "Zoology", "Paleontology", "Predation" ]
Parent Topic
Child Topic
    No Parent Topic