language-icon Old Web
English
Sign In

Voice coil

A voice coil (consisting of a former, collar, and winding) is the coil of wire attached to the apex of a loudspeaker cone. It provides the motive force to the cone by the reaction of a magnetic field to the current passing through it. The term is also used for voice coil linear motors, such as those used to move the heads inside hard disk drives, which produce a larger force and move a longer distance but work on the same principle.Overhung coilUnderhung coil A voice coil (consisting of a former, collar, and winding) is the coil of wire attached to the apex of a loudspeaker cone. It provides the motive force to the cone by the reaction of a magnetic field to the current passing through it. The term is also used for voice coil linear motors, such as those used to move the heads inside hard disk drives, which produce a larger force and move a longer distance but work on the same principle. By driving a current through the voice coil, a magnetic field is produced. This magnetic field causes the voice coil to react to the magnetic field from a permanent magnet fixed to the speaker's frame, thereby moving the cone of the speaker. By applying an audio waveform to the voice coil, the cone will reproduce the sound pressure waves, corresponding to the original input signal. Because the moving parts of the speaker must be of low mass (to accurately reproduce high-frequency sounds without being damped too much by inertia), voice coils are usually made as light weight as possible, making them delicate. Passing too much power through the coil can cause it to overheat (see ohmic heating). Voice coils wound with flattened wire, called ribbon-wire, provide a higher packing density in the magnetic gap than coils with round wire. Some coils are made with surface-sealed bobbin and collar materials so they may be immersed in a ferrofluid which assists in cooling the coil, by conducting heat away from the coil and into the magnet structure. Excessive input power at low frequencies can cause the coil to move beyond its normal limits, causing distortion and possibly mechanical damage. Power handling is related to the heat resistance of the wire insulation, adhesive, and bobbin material, and may be influenced by the coil's position within the magnetic gap. The majority of loudspeakers use 'overhung' voice coils, with windings that are taller than the height of the magnetic gap. In this topology, a portion of the coil remains within the gap at all times. The power handling is limited by the amount of heat that can be tolerated, and the amount that can be removed from the voice coil. Some magnet designs include aluminium heat-sink rings above and below the magnet gap, to improve conduction cooling, significantly improving power handling. If all other conditions remain constant, the area of the voice coil windings is proportional to the power handling of the coil. Thus a 100 mm diameter voice coil, with a 12 mm winding height has similar power handling to a 50 mm diameter voice coil with a 24 mm winding height. In 'underhung' voice coil designs (see below), the coil is shorter than the magnetic gap, a topology that provides consistent electromotive force over a limited range of motion, known as Xmax. If the coil is overdriven it may leave the gap, generating significant distortion and losing the heat-sinking benefit of the steel, heating rapidly.

[ "Magnet", "Electromagnetic coil", "Double voice", "Tinsel wire", "Electrodynamic loudspeaker", "High pitch voice" ]
Parent Topic
Child Topic
    No Parent Topic