language-icon Old Web
English
Sign In

Superdense coding

In quantum information theory, superdense coding is a quantum communication protocol to transmit two classical bits of information (i.e., either 00, 01, 10 or 11) from a sender (often called Alice) to a receiver (often called Bob), by sending only one qubit from Alice to Bob, under the assumption of Alice and Bob pre-sharing an entangled state. This protocol was first proposed by Bennett and Weisner in 1992 and experimentally actualized in 1996 by Mattel, Weinfurter, Kwiat and Zeilinger using entangled photon pairs. By performing one of four quantum gate operations on the (entangled) qubit she possesses, Alice can prearrange the measurement Bob makes. After receiving Alice's qubit, operating on the pair and measuring both, Bob has two classical bits of information. If Alice and Bob do not already share entanglement before the protocol begins, then it is impossible to send two classical bits using 1 qubit, as this would violate Holevo's theorem. In quantum information theory, superdense coding is a quantum communication protocol to transmit two classical bits of information (i.e., either 00, 01, 10 or 11) from a sender (often called Alice) to a receiver (often called Bob), by sending only one qubit from Alice to Bob, under the assumption of Alice and Bob pre-sharing an entangled state. This protocol was first proposed by Bennett and Weisner in 1992 and experimentally actualized in 1996 by Mattel, Weinfurter, Kwiat and Zeilinger using entangled photon pairs. By performing one of four quantum gate operations on the (entangled) qubit she possesses, Alice can prearrange the measurement Bob makes. After receiving Alice's qubit, operating on the pair and measuring both, Bob has two classical bits of information. If Alice and Bob do not already share entanglement before the protocol begins, then it is impossible to send two classical bits using 1 qubit, as this would violate Holevo's theorem. Superdense coding is the underlying principle of secure quantum secret coding. The necessity of having both qubits to decode the information being sent eliminates the risk of eavesdroppers intercepting messages. It can be thought of as the opposite of quantum teleportation, in which one transfers one qubit from Alice to Bob by communicating two classical bits, as long as Alice and Bob have a pre-shared Bell pair. Suppose Alice wants to send two classical bits of information (00, 01, 10, or 11) to Bob using qubits (instead of classical bits). To do this, an entangled state (e.g. a Bell state) is prepared using a Bell circuit or gate by Charlie, a third person. Charlie then sends one of these qubits (in the Bell state) to Alice and the other to Bob. Once Alice obtains her qubit in the entangled state, she applies a certain quantum gate to her qubit depending on which two-bit message (00, 01, 10 or 11) she wants to send to Bob. Her entangled qubit is then sent to Bob who, after applying the appropriate quantum gate and making a measurement, can retrieve the classical two-bit message. Alice must tell Bob which gate to apply after he receives the entangled qubit in order to obtain the correct classical bits.

[ "Quantum error correction", "Quantum network", "Quantum channel", "Quantum technology" ]
Parent Topic
Child Topic
    No Parent Topic