language-icon Old Web
English
Sign In

2-Norbornyl cation

In organic chemistry, the term 2-norbornyl cation (or 2-bicycloheptyl cation) describes one of the three carbocations formed from derivatives of norbornane. Though 1-norbornyl and 7-norbornyl cations have been studied, the most extensive studies and vigorous debates have been centered on the exact structure of the 2-norbornyl cation.The nature of bonding in the 2-norbornyl cation was the center of a vigorous, well-known debate in the chemistry community through the middle of the twentieth century. While the majority of chemists believed that a three-center two-electron bond best depicted its ground state electronic structure, others argued that all data concerning the 2-norbornyl cation could be explained by depicting it as a rapidly equilibrating pair of cations.Non-classical ions differ from traditional cations in their electronic structure: though chemical bonds are typically depicted as the sharing of electrons between two atoms, stable non-classical ions can contain three or more atoms that share a single pair of electrons. In 1939, Thomas Nevell and others attempted to elucidate the mechanism for transforming camphene hydrochloride into isobornyl chloride. In one of the proposed reaction mechanisms depicted in the paper, the positive charge of an intermediate cation was not assigned to a single atom but rather to the structure as a whole. This was later cited by opponents of the non-classical description as the first time that a non-classical ion was invoked. However, the term 'non-classical ion' did not explicitly appear in the chemistry literature until over a decade later, when it was used to label delocalized bonding in a pyramidal, butyl cation.The 2-norbornyl cation can be made by a multitude of synthetic routes. These routes can be grouped into three different classes: σ Formation, π Formation, and Formation by Rearrangement. Each of these is discussed separately below.One probe for testing whether or not the 2-norbornyl cation is non-classical is investigating the inherent symmetry of the cation. Many spectroscopic tools, such as nuclear magnetic resonance spectroscopy (NMR spectroscopy) and Raman spectroscopy, give hints about the reflectional and rotational symmetry present in a molecule or ion. Each of the three proposed structures of the 2-norbornyl cation illustrates a different molecular symmetry. The non-classical form contains a reflection plane through carbons 4, 5, 6, and the midpoint of carbons 1 and 2. The classical form contains neither reflectional nor rotational symmetry. The protonated nortricyclene structure contains a C3-symmetric rotation axis through carbon 4.Some studies have used interesting comparisons in order to probe the energetic stability of the 2-norbornyl cation provided by its delocalized nature. Comparing the rearrangement between the 3-methyl-2-norbornyl cation and the 2-methyl-2-norbornyl cation to that between the tertiary and secondary isopentane carbocations, one finds that the change in enthalpy is about 6 kcal/mol less for the norbornyl system. Since the major difference between these two reversible rearrangements is the amount of delocalization possible in the electronic ground state, one can attribute the stabilization of the 3-methyl-2-norbornyl cation to its non-classical nature. However, some experimental studies failed to observe this stabilization in solvolysis reactions.To back up their suggestion of the non-classical nature of the 2-norbornyl cation, Winstein and Trifan first used kinetic evidence of the increased reaction rate for formation of the 2-exo-norbornyl cation over the 2-endo-norbornyl cation. Other researchers investigated the reaction rate of compounds that could feature anchimeric assistance but could not undergo rearrangements as the norbornyl system could show similar trends in rate enhancement. This has been claimed by some to be definitive evidence for the non-classical picture. But not all agree. Other researchers found that cyclopentane derivatives that were structurally similar to the norbornyl system still featured enhanced reaction rates, leading them to claim that the classical norbornyl cation describes the system much better.Radioactive isotope labeling experiments provide a powerful tool for determining the structure of organic molecules. By systematically decomposing the 2-norbornyl cation and analyzing the amount of radioactive isotope in each decomposition product, researchers were able to show further evidence for the non-classical picture of delocalized bonding (see Figure 9). Proponents of the nonclassical picture would expect 50% of the generated CO2 in the decomposition in Figure 9 to contain 14C, while proponents of the classical picture would expect more of the generated CO2 to be radioactive due to the short-lived nature of the cation. 40% of the carbon dioxide produced via decomposition has been observed to be radioactive, suggesting that the non-classical picture is more correct.Though characterization of 2-norbornyl cation crystals may have significantly precluded further debates about its electronic structure, it does not crystallize under any standard conditions. Recently, the crystal structure has been obtained and reported through a creative means: addition of aluminum tribromide to 2-norbornyl bromide in dibromomethane at low temperatures afforded crystals of +−·CH2Br2. By examining the resulting crystal structure, researchers were able to confirm that the crystalline geometry best supports the case for delocalized bonding in the stable 2-norbornyl cation. Bond lengths between the 'bridging' carbon 6 and each of carbons 1 and 2 were found to be slightly longer than typical alkane bonds. According to the nonclassical picture, one would expect a bond order between 0 and 1 for these bonds, signifying that this explains the crystal structure well. The bond length between carbons 1 and 2 was reported as being between typical single and double carbon-carbon bond lengths, which agrees with nonclassical predictions of a bond order slightly above 1. According to the non-classical picture, one would expect a bond order between 0 and 1 for the first two bonds. Investigators who crystallized the 2-norbornyl cation commented that the cation proved impossible to crystallize unless provided a chemical environment that locked it into one definite orientation.

[ "Photochemistry", "Medicinal chemistry", "Organic chemistry", "Inorganic chemistry", "Stereochemistry" ]
Parent Topic
Child Topic
    No Parent Topic