language-icon Old Web
English
Sign In

Gas dynamic cold spray

Gas dynamic cold spraying or cold spraying (CS) is a coating deposition method. Solid powders (1 to 50 micrometers in diameter) are accelerated in a supersonic gas jet to velocities up to ca. 1200 m/s. During impact with the substrate, particles undergo plastic deformation and adhere to the surface. To achieve a uniform thickness the spraying nozzle is scanned along the substrate. Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying. The kinetic energy of the particles, supplied by the expansion of the gas, is converted to plastic deformation energy during bonding. Unlike thermal spraying techniques, e.g., plasma spraying, arc spraying, flame spraying, or high velocity oxygen fuel (HVOF), the powders are not melted during the spraying process. Gas dynamic cold spraying or cold spraying (CS) is a coating deposition method. Solid powders (1 to 50 micrometers in diameter) are accelerated in a supersonic gas jet to velocities up to ca. 1200 m/s. During impact with the substrate, particles undergo plastic deformation and adhere to the surface. To achieve a uniform thickness the spraying nozzle is scanned along the substrate. Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying. The kinetic energy of the particles, supplied by the expansion of the gas, is converted to plastic deformation energy during bonding. Unlike thermal spraying techniques, e.g., plasma spraying, arc spraying, flame spraying, or high velocity oxygen fuel (HVOF), the powders are not melted during the spraying process. Cold spraying was developed in the 1990. While experimenting with the particle erosion of the target, which was exposed to a two-phase high-velocity flow of fine powder in a wind tunnel, scientists observed accidental rapid formation of coatings. This coating technique was commercialized in the 1990s. There are two types of CS. High pressure cold spraying (HPCS) in which the working gas is nitrogen or helium at pressures above 1.5 MPa, a flow rate of more than 2 m3/min, heating power of 18 kW. It is used for spraying pure metal powders with the sizes of 5–50 µm. In low-pressure cold spraying (LPCS), the working gas is a compressed gas with pressure 0.5–1.0 MPa, flow rate 0.5–2 m3/min and the heating power 3–5 kW. It is used for spraying a mechanical mixture of metal and ceramic powders. The inclusion of a ceramic component in the mixture provides high-quality coatings with relatively low energy consumption. The most prevailing bonding theory in cold spraying is attributed to 'adiabatic shear instability' which occurs at the particle substrate interface at or beyond a certain velocity called critical velocity. When a spherical particle travelling at critical velocity impacts a substrate, a strong pressure field propagates spherically into the particle and substrate from the point of contact. As a result of this pressure field, a shear load is generated which accelerates the material laterally and causes localized shear straining. The shear loading under critical conditions leads to adiabatic shear instability where thermal softening is locally dominant over work strain and strain rate hardening, which leads to a discontinuous jump in strain and temperature and breakdown of flow stresses. This adiabatic shear instability phenomena results in viscous flow of material at an outward flowing direction with temperatures close to melting temperature of the material. This material jetting is also a known phenomenon in explosive welding of materials.

[ "Plasma", "Microstructure", "Coating", "Substrate (chemistry)", "Plasma transferred wire arc thermal spraying" ]
Parent Topic
Child Topic
    No Parent Topic