In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable X equal to the number of failures needed to get r successes in a sequence of independent Bernoulli trials where the probability p of success on each trial is constant within any given experiment but is itself a random variable following a beta distribution, varying between different experiments. Thus the distribution is a compound probability distribution. In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable X equal to the number of failures needed to get r successes in a sequence of independent Bernoulli trials where the probability p of success on each trial is constant within any given experiment but is itself a random variable following a beta distribution, varying between different experiments. Thus the distribution is a compound probability distribution. This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution. A shifted form of the distribution has been called the beta-Pascal distribution. If parameters of the beta distribution are α and β, and if