language-icon Old Web
English
Sign In

Flight test

Flight testing is a branch of aeronautical engineering that develops and gathers data during flight of an aircraft, or atmospheric testing of launch vehicles and reusable spacecraft, and then analyzes the data to evaluate the aerodynamic flight characteristics of the vehicle in order to validate the design, including safety aspects. Flight testing is a branch of aeronautical engineering that develops and gathers data during flight of an aircraft, or atmospheric testing of launch vehicles and reusable spacecraft, and then analyzes the data to evaluate the aerodynamic flight characteristics of the vehicle in order to validate the design, including safety aspects. The flight test phase accomplishes two major tasks: 1) finding and fixing any design problems and then 2) verifying and documenting the vehicle capabilities for government certification or customer acceptance. The flight test phase can range from the test of a single new system for an existing vehicle to the complete development and certification of a new aircraft, launch vehicle, or reusable spacecraft. Therefore, the duration of a particular flight test program can vary from a few weeks to many years. There are typically two categories of flight test programs – commercial and military. Commercial flight testing is conducted to certify that the aircraft meets all applicable safety and performance requirements of the government certifying agency. In the US, this is the Federal Aviation Administration (FAA); in Canada, Transport Canada (TC); in the United Kingdom (UK), the Civil Aviation Authority; and in the European Union, the European Aviation Safety Agency (EASA). Since commercial aircraft development is normally funded by the aircraft manufacturer and/or private investors, the certifying agency does not have a stake in the commercial success of the aircraft. These civil agencies are concerned with the aircraft's safety and that the pilot's flight manual accurately reports the aircraft's performance. The market will determine the aircraft's suitability to operators. Normally, the civil certification agency does not get involved in flight testing until the manufacturer has found and fixed any development issues and is ready to seek certification. Military programs differ from commercial in that the government contracts with the aircraft manufacturer to design and build an aircraft to meet specific mission capabilities. These performance requirements are documented to the manufacturer in the aircraft specification and the details of the flight test program (among many other program requirements) are spelled out in the statement of work. In this case, the government is the customer and has a direct stake in the aircraft's ability to perform the mission. Since the government is funding the program, it is more involved in the aircraft design and testing from early-on. Often military test pilots and engineers are integrated as part of the manufacturer's flight test team, even before first flight. The final phase of the military aircraft flight test is the Operational Test (OT). OT is conducted by a government-only test team with the dictate to certify that the aircraft is suitable and effective to carry out the intended mission. Flight testing of military aircraft is often conducted at military flight test facilities. The US Navy tests aircraft at Naval Air Station Patuxent River and the US Air Force at Edwards Air Force Base. The U.S. Air Force Test Pilot School and the U.S. Naval Test Pilot School are the programs designed to teach military test personnel. In the UK, most military flight testing is conducted by three organizations, the RAF, BAE Systems and QinetiQ. For minor upgrades the testing may be conducted by one of these three organizations in isolation, but major programs are normally conducted by a joint trials team (JTT), with all three organizations working together under the umbrella of an integrated project team (IPT) airspace. All launch vehicles, as well as a few reusable spacecraft, must necessarily be designed to deal with aerodynamic flight loads while moving through the atmosphere. Many launch vehicles are flight tested, with rather more extensive data collection and analysis on the initial orbital launch of a particular launch vehicle design. Reusable spacecraft or reusable booster test programs are much more involved and typically follow the full envelope expansion paradigm of traditional aircraft testing. Previous and current test programs include the early drop tests of the Space Shuttle, the X-24B, Space Ship Two, Dream Chaser, and the SpaceX reusable launch system development program including the VTVL Grasshopper and OK-GLI (within the Buran programme) purpose-built test vehicles. Flight testing—typically as a class of non-revenue producing flight, although SpaceX has also done extensive flight tests on the post-mission phase of a returning booster flight on revenue launches—can be subject to the latter's statistically demonstrated higher risk of accidents or serious incidents. This is mainly due to the unknowns of a new aircraft or launch vehicle's handling characteristics and lack of established operating procedures, and can be exacerbated if test pilot training or experience of the flight crew is lacking For this reason, flight testing is carefully planned in three phases: preparation; execution; and analysis and reporting. For both commercial and military aircraft, as well as launch vehicles, flight test preparation begins well before the test vehicle is ready to fly. Initially what needs to be tested must be defined, from which the Flight Test Engineers prepare the test plan, which is essentially certain maneuvers to be flown (or systems to be exercised). Each single test is known as a Test Point. A full certification/qualification flight test program for a new aircraft will require testing for many aircraft systems and in-flight regimes; each is typically documented in a separate test plan. Altogether, a certification flight test program will consist of approximately 10,000 Test Points.

[ "Simulation", "Control engineering", "Aerospace engineering", "Aeronautics", "Composite material", "Flight test instrumentation", "flight test data" ]
Parent Topic
Child Topic
    No Parent Topic