language-icon Old Web
English
Sign In

Haplodiploidy

Haplodiploidy is a sex-determination system in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. Haplodiploidy is sometimes called arrhenotoky. Haplodiploidy is a sex-determination system in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. Haplodiploidy is sometimes called arrhenotoky. Haplodiploidy determines the sex in all members of the insect orders Hymenoptera (bees, ants, and wasps) and Thysanoptera ('thrips'). The system also occurs sporadically in some spider mites, Hemiptera, Coleoptera (bark beetles), and rotifers. In this system, sex is determined by the number of sets of chromosomes an individual receives. An offspring formed from the union of a sperm and an egg develops as a female, and an unfertilized egg develops as a male. This means that the males have half the number of chromosomes that a female has, and are haploid. The haplodiploid sex-determination system has a number of peculiarities. For example, a male has no father and cannot have sons, but he has a grandfather and can have grandsons. Additionally, if a eusocial-insect colony has only one queen, and she has only mated once, then the relatedness between workers (diploid females) in a hive or nest is ​3⁄4. This means the workers in such monogamous single-queen colonies are significantly more closely related than in other sex determination systems where the relatedness of siblings is usually no more than ​1⁄2. It is this point which drives the kin selection theory of how eusociality evolved. Whether haplodiploidy did in fact pave the way for the evolution of eusociality is still a matter of debate. Another feature of the haplodiploidy system is that recessive lethal and deleterious alleles will be removed from the population rapidly because they will automatically be expressed in the males (dominant lethal and deleterious alleles are removed from the population every time they arise, as they kill any individual they arise in). Haplodiploidy is not the same thing as an X0 sex-determination system. In haplodiploidy, males receive one half of the chromosomes that females receive, including autosomes. In an X0 sex-determination system, males and females receive an equal number of autosomes, but when it comes to sex chromosomes, females will receive two X chromosomes while males will receive only a single X chromosome. Several models have been proposed for the genetic mechanisms of haplodiploid sex-determination. The model most commonly referred to is the complementary allele model. According to this model, if an individual is heterozygous for a certain locus, it develops into a female, whereas hemizygous and homozygous individuals develop into males. In other words, diploid offspring develop from fertilized eggs, and are normally female, while haploid offspring develop into males from unfertilized eggs.Diploid males would be infertile, as their cells would not undergo meiosis to form sperm. Therefore, the sperm would be diploid, which means that their offspring would be triploid. Since hymenopteran mother and sons share the same genes, they may be especially sensitive to inbreeding: Inbreeding reduces the number of different sex alleles present in a population, hence increasing the occurrence of diploid males. After mating, each fertile hymenopteran female stores sperm in an internal sac called the spermatheca. The mated female controls the release of stored sperm from within the organ: If she releases sperm as an egg passes down her oviduct, the egg is fertilized.Social bees, wasps, and ants can modify sex ratios within colonies which maximizes relatedness among members and generates a workforce appropriate to surrounding conditions. In other solitary hymenopterans, the females lay unfertilized male eggs on poorer food sources while laying the fertilized female eggs on better food sources, possibly because the fitness of females will be more adversely affected by shortages in their early life. Sex ratio manipulation is also practiced by haplodiploid ambrosia beetles, who lay more male eggs when the chances for males to disperse and mate with females in different sites are greater. In honeybees, the drones (males) are entirely derived from the queen, their mother. The diploid queen has 32 chromosomes and the haploid drones have 16 chromosomes. Drones produce sperm cells that contain their entire genome, so the sperm are all genetically identical except for mutations. The male bees' genetic makeup is therefore entirely derived from the mother, while the genetic makeup of the female worker bees is half derived from the mother, and half from the father. Thus, if a queen bee mates with only one drone, any two of her daughters will share, on average, ​3⁄4 of their genes. The diploid queen's genome is recombined for her daughters, but the haploid father's genome is inherited by his daughters 'as is'. It is also possible for a laying worker bee to lay an unfertilised egg, which is always a male.

[ "Ploidy", "Sex ratio", "Offspring" ]
Parent Topic
Child Topic
    No Parent Topic