language-icon Old Web
English
Sign In

Search for the Higgs boson

The search for the Higgs boson was a 40-year effort by physicists to prove the existence or non-existence of the Higgs boson, first theorised in the 1960s. The Higgs boson was the last unobserved fundamental particle in the Standard Model of particle physics, and its discovery was described as being the 'ultimate verification' of the Standard Model. In March 2013, the Higgs boson was officially confirmed to exist.We should perhaps finish our paper with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, ..., and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons, we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people doing experiments vulnerable to the Higgs boson should know how it may turn up.Left: Diphoton Channel: Boson subsequently decays into 2 gamma ray photons by virtual interaction with a W Boson Loop or Top-quark Loop.Right: 4-Lepton 'Golden Channel' Boson emits 2 Z bosons, which each decay into 2 leptons (electrons, muons).Experimental Analysis of these channels reached a significance of 5 sigma.The analysis of additional vector boson fusion channels brought the CMS significance to 4.9 sigma. The search for the Higgs boson was a 40-year effort by physicists to prove the existence or non-existence of the Higgs boson, first theorised in the 1960s. The Higgs boson was the last unobserved fundamental particle in the Standard Model of particle physics, and its discovery was described as being the 'ultimate verification' of the Standard Model. In March 2013, the Higgs boson was officially confirmed to exist. This confirmed answer proved the existence of the hypothetical Higgs field—a field of immense significance that is hypothesised as the source of electroweak symmetry breaking and the means by which elementary particles acquire mass. Symmetry breaking is considered proven but confirming exactly how this occurs in nature is a major unanswered question in physics. Proof of the Higgs field (by observing the associated particle) validates the final unconfirmed part of the Standard Model as essentially correct, avoiding the need for alternative sources for the Higgs mechanism. Evidence of its properties is likely to greatly affect human understanding of the universe and open up 'new' physics beyond current theories. Despite their importance, the search and the proof were extremely difficult and took decades, because direct production, detection and verification of the Higgs boson on the scale needed to confirm the discovery and learn its properties required a very large experimental project and huge computing resources. For this reason, most experiments until around 2011 aimed to exclude ranges of masses that the Higgs could not have. Ultimately the search led to the construction of the Large Hadron Collider (LHC) in Geneva, Switzerland, the largest particle accelerator in the world, designed especially for this and other high-energy tests of the Standard Model. Like other massive particles (e.g. the top quark and W and Z bosons), Higgs bosons decay to other particles almost immediately, long before they can be observed directly. However, the Standard Model precisely predicts the possible modes of decay and their probabilities. This allows the creation and decay of a Higgs boson to be shown by careful examination of the decay products of collisions.

[ "Boson", "Large Hadron Collider", "Detector", "Elementary particle", "Communication channel" ]
Parent Topic
Child Topic
    No Parent Topic