Anti-fouling paint - a category of commercially available underwater hull paints (also known as bottom paints) - is a specialized category of coatings applied as the outer (outboard) layer to the hull of a ship or boat, to slow the growth and/or facilitate detachment of subaquatic organisms that attach to the hull and can affect a vessel's performance and durability (see also biofouling). Anti-fouling paints are often applied as one component of multi-layer coating systems which may have other functions in addition to their antifouling properties, such as acting as a barrier against corrosion on metal hulls that will degrade and weaken the metal, or improving the flow of water past the hull of a fishing vessel or high-performance racing yachts. Anti-fouling paint - a category of commercially available underwater hull paints (also known as bottom paints) - is a specialized category of coatings applied as the outer (outboard) layer to the hull of a ship or boat, to slow the growth and/or facilitate detachment of subaquatic organisms that attach to the hull and can affect a vessel's performance and durability (see also biofouling). Anti-fouling paints are often applied as one component of multi-layer coating systems which may have other functions in addition to their antifouling properties, such as acting as a barrier against corrosion on metal hulls that will degrade and weaken the metal, or improving the flow of water past the hull of a fishing vessel or high-performance racing yachts. In the Age of Sail, sailing vessels suffered severely from the growth of barnacles and weeds on the hull, called 'fouling'. Thin sheets of copper or Muntz metal were nailed onto the hull in an attempt to prevent marine growth. One famous example of the traditional use of metal sheathing is the clipper Cutty Sark, which is preserved as a museum ship in dry-dock at Greenwich in England. Marine growth affected performance (and profitability) in many ways. In an official 1900 Letter from the U.S. Navy to the U.S. Senate Committee on Naval Affairs, it was noted that the (British) Admiralty had considered a proposal in 1847 to limit the number of iron ships (only recently introduced into naval service) and even to consider the sale of all iron ships in its possession, due to significant problems with biofouling. However, once an antifouling paint 'with very fair results' was found, the iron ships were instead retained and continued to be built. During World War II, which included a substantial naval component, the U.S. Navy provided significant funding to the Woods Hole Oceanographic Institution to gather information and conduct research on marine biofouling and technologies for its prevention. This work was published as a book in 1952, the contents of which are available online as individual chapters. The third and final part of this book includes a number of chapters that go into the state of the art at that time for the formulation of anti-fouling paints. Lunn (1974) provides further history. In modern times, antifouling paints are formulated with cuprous oxide (or other copper compounds) and/or other biocides—special chemicals which impede growth of barnacles, algae, and marine organisms.