language-icon Old Web
English
Sign In

Earth Similarity Index

The Earth Similarity Index (ESI) is a proposed characterization of how similar a planetary-mass object or natural satellite is to Earth. It was designed to be a scale from zero to one, with Earth having a value of one; this is meant to simplify planet comparisons from large databases. It has no quantitative meaning for habitability. The Earth Similarity Index (ESI) is a proposed characterization of how similar a planetary-mass object or natural satellite is to Earth. It was designed to be a scale from zero to one, with Earth having a value of one; this is meant to simplify planet comparisons from large databases. It has no quantitative meaning for habitability. The ESI, as proposed in 2011 by Schulze-Makuch et al. in the journal Astrobiology, incorporates a planet's radius, density, escape velocity, and surface temperature into the index. Thus the authors describe the index as having two components: (1) associated with the interior which is associated with the mean radius and bulk density, and (2) associated with the surface which is associated with the escape velocity and surface temperature. An article on the preprint server arxiv.org attempts to reproduce the ESI using only the temperature and mass of the planet. ESI was also referenced in an article published in Revista Cubana de Física. For exoplanets, in almost every case only the planet's orbital period along with either the proportional dimming of the star due to the planet's transit or the radial velocity variation of the star in response to the planet is known with any degree of certainty, and so every other property not directly determined by those measurements is speculative. For example, while surface temperature is influenced by a variety of factors including irradiance, tidal heating, albedo, insolation and greenhouse warming, as these factors are not known for any exoplanet, quoted ESI values use planetary equilibrium temperature as a stand-in. A webpage maintained by one of the authors of the 2011 Astrobiology article, Abel Méndez at the University of Puerto Rico at Arecibo, lists his calculations of the index for various exoplanetary systems. Méndez's ESI is calculated as where x i {displaystyle x_{i}} and x i 0 {displaystyle x_{i0}} are properties of the extraterrestrial body and of Earth, respectively, w i {displaystyle w_{i}} is the weighted exponent of each property, and n {displaystyle n} is the total number of properties. It is comparable to, and constructed from, the Bray–Curtis Similarity Index. The weight assigned to each property, w i {displaystyle w_{i}} , are free parameters that can be chosen to emphasize certain characteristics over others or to obtain desired index thresholds or rankings. The webpage also ranks what it describes as the habitability of planets and moons according to three criteria: the location in the habitable zone, ESI, and a speculation as to a capacity to sustain organisms at the bottom of the food chain, a different index collated on the webpage identified as the 'Global Primary Habitability scale'. The 2011 Astrobiology article and the ESI values found in it received press attention at the time of the article's publication. As a result, Mars was reported to have the second-highest ESI in the Solar System with a value of 0.70. A number of exoplanets listed in that article were reported to have values in excess of this, with Kepler-438b reported to have the highest ESI of confirmed exoplanets at 0.88. Other ESI values that have been reported by third parties include:

[ "Circumstellar habitable zone", "Planetary migration", "Kepler-69c", "Planetary habitability", "Planetary mass" ]
Parent Topic
Child Topic
    No Parent Topic