language-icon Old Web
English
Sign In

Magnetic separation

Magnetic Separation is the process of separating components of mixtures by using magnets to attract magnetic materials. The process that is used for magnetic separation detaches non-magnetic material with those who are magnetic. This technique is useful for not all, but few minerals such as ferromagnetic (materials strongly affected by magnetic fields) and paramagnetic (materials that are less affected but the effect is still noticeable). Not all metals are magnetic; gold, silver and aluminum are some examples. Magnetic Separation is the process of separating components of mixtures by using magnets to attract magnetic materials. The process that is used for magnetic separation detaches non-magnetic material with those who are magnetic. This technique is useful for not all, but few minerals such as ferromagnetic (materials strongly affected by magnetic fields) and paramagnetic (materials that are less affected but the effect is still noticeable). Not all metals are magnetic; gold, silver and aluminum are some examples. A large diversity of mechanical are used to separate magnetic materials. During magnetic separation, magnets are situated inside two separator drums which bear liquids. Due to the magnets, magnetic particles are being drifted by the movement of the drums. This can create a magnetic concentrate (e.g. an ore concentrate). Michael Faraday discovered that when a substance is put in a magnetic environment, the intensity of the environment is modified by it. With this information, he discovered that different materials can be separated with their magnetic properties. The table below shows the common ferromagnetic and paramagnetic minerals as well as the field intensity that is required in order to separate those minerals. In the 1860s, magnetic separation started to become commercialized. It was used to separate iron from brass. After the 1880s, ferromagnetic materials started to be magnetically separated. In the 1900s, high intensity magnetic separation was inaugurated which allowed the separation of pragmatic materials. After the Second World War, systems that were the most common were electromagnets. The technique was used in scrap yards. Magnetic separation was developed again in the late 1970s with new technologies being inaugurated. The new forms of magnetic separation included magnetic pulleys, overhead magnets and magnetic drums. In mines where wolframite was mixed with cassiterite, such as South Crofty and East Pool mine in Cornwall or with bismuth such as at the Shepherd and Murphy mine in Moina, Tasmania, magnetic separation is used to separate the ores. At these mines, a device called a Wetherill's Magnetic Separator (invented by John Price Wetherill, 1844–1906) was used. In this machine, the raw ore, after calcination was fed onto a conveyor belt which passed underneath two pairs of electromagnets under which further belts ran at right angles to the feed belt. The first pair of balls was weakly magnetized and served to draw off any iron ore present. The second pair were strongly magnetized and attracted the wolframite, which is weakly magnetic. These machines were capable of treating 10 tons of ore a day. Magnetic separation can also be used in electromagnetic cranes that separate magnetic material from scraps and unwanted substances. This explains its use for shipment equipments and waste management. Unwanted metals can be removed from goods with this technique. It keeps all materials pure. Recycling centres use magnetic separation often to separate components from recycling, isolate metals, and purify ores. Overhead magnets, magnetic pulleys, and the magnetic drums were the methods used in the recycling industry. Magnetic separation is also useful in mining iron as it is attracted to a magnet. Another application, not widely known but very important, is to use magnets in process industries to remove metal contaminants from product streams. This takes a lot of importance in food or pharmaceutical industries. Magnetic separation is also used in situations where pollution needs to be controlled, in chemical processing, as well as during the benefaction of nonferrous low-grade ores.

[ "Chemical engineering", "Nuclear magnetic resonance", "Quantum mechanics", "Metallurgy", "magnetic fraction", "magnetic filtration", "High-intensity magnetic separator", "magnetic separator" ]
Parent Topic
Child Topic
    No Parent Topic