Transcranial direct current stimulation (tDCS) is a form of neuromodulation that uses constant, low direct current delivered via electrodes on the head. It can be contrasted with cranial electrotherapy stimulation, which generally uses alternating current the same way. Transcranial direct current stimulation (tDCS) is a form of neuromodulation that uses constant, low direct current delivered via electrodes on the head. It can be contrasted with cranial electrotherapy stimulation, which generally uses alternating current the same way. It was originally developed to help patients with brain injuries or psychiatric conditions like major depressive disorder. tDCS appears to have some potential for treating depression. However, there is mixed evidence about whether tDCS is useful for cognitive enhancement in healthy people. Several reviews have found evidence of small yet significant cognitive improvements. Other reviews found no evidence at all, although one of them has been criticized for overlooking within-subject effects and evidence from multiple-session tDCS trials. There is no good evidence that tDCS is useful for memory deficits in Parkinson's disease and Alzheimer's disease, schizophrenia, non-neuropathic pain, or improving upper limb function after stroke. tDCS appears to be somewhat effective for depression. There is also evidence that tDCS is useful in treating neuropathic pain after spinal cord injury and improving activities of daily living assessment after stroke. People susceptible to seizures, such as people with epilepsy should not receive tDCS. As of 2017, at stimulation up to 60 min and up to 4 mA over two weeks, adverse effects include skin irritation, a phosphene at the start of stimulation, nausea, headache, dizziness, and itching under the electrode. Adverse effects of long term treatment were not known as of 2017. Nausea most commonly occurs when the electrodes are placed above the mastoid for stimulation of the vestibular system. A phosphene is a brief flash of light that can occur if an electrode is placed near the eye. Studies have been completed to determine the current density at which overt brain damage occurs in rats. It was found that in cathodal stimulation, a current density of 142.9 A/m2 delivering a charge density of 52400 C/m2 or higher caused a brain lesion in the rat. This is over two orders of magnitude higher than protocols that were in use as of 2009. One of the aspects of tDCS is its ability to achieve cortical changes even after the stimulation is ended. The duration of this change depends on the length of stimulation as well as the intensity of stimulation. The effects of stimulation increase as the duration of stimulation increases or the strength of the current increases. The way that the stimulation changes brain function is either by causing the neuron’s resting membrane potential to depolarize or hyperpolarize. When positive stimulation (anodal tDCS) is delivered, the current causes a depolarization of the resting membrane potential, which increases neuronal excitability and allows for more spontaneous cell firing. When negative stimulation (cathodal tDCS) is delivered, the current causes a hyperpolarization of the resting membrane potential. This decreases neuron excitability due to the decreased spontaneous cell firing. tDCS has been proposed to promote both long term potentiation and long term depression. Transcranial direct current stimulation works by sending constant, low direct current through the electrodes. When these electrodes are placed in the region of interest, the current induces intracerebral current flow. This current flow then either increases or decreases the neuronal excitability in the specific area being stimulated based on which type of stimulation is being used. This change of neuronal excitability leads to alteration of brain function, which can be used in various therapies as well as to provide more information about the functioning of the human brain.