language-icon Old Web
English
Sign In

Deep energy retrofit

A Deep energy retrofit (abbreviated as DER) can be broadly categorized as an energy conservation measure in an existing building also leading to an overall improvement in the building performance. While there is no exact definition for a deep energy retrofit, it can be defined as a whole-building analysis and construction process that aims at achieving on-site energy use minimization in a building by 50% or more compared to the baseline energy use (calculated using utility bills analysis) making use of existing technologies, materials and construction practices. Such a retrofit reaps multifold (energy and non-energy) benefits beyond energy cost savings, unlike conventional energy retrofit. It may also involve remodeling the building to achieve a harmony in energy, indoor air quality, durability, and thermal comfort. An integrated project delivery method is recommended for a deep energy retrofit project. An over-time approach in a deep energy retrofitting project provides a solution to the large upfront costs problem in all-at-once execution of the project.without any need for alternative accommodations.permitting, inspection and construction labor.their desire for further improvements and refinements.due to a lack of careful and detailed planning.as maintenance and equipment replacement require.behaviors, and the potential for behavior modification to reduceefficiency measures (such as solar PV or windows), by first investingActive occupantand LeadershipInternal andFuture Earnings A Deep energy retrofit (abbreviated as DER) can be broadly categorized as an energy conservation measure in an existing building also leading to an overall improvement in the building performance. While there is no exact definition for a deep energy retrofit, it can be defined as a whole-building analysis and construction process that aims at achieving on-site energy use minimization in a building by 50% or more compared to the baseline energy use (calculated using utility bills analysis) making use of existing technologies, materials and construction practices. Such a retrofit reaps multifold (energy and non-energy) benefits beyond energy cost savings, unlike conventional energy retrofit. It may also involve remodeling the building to achieve a harmony in energy, indoor air quality, durability, and thermal comfort. An integrated project delivery method is recommended for a deep energy retrofit project. An over-time approach in a deep energy retrofitting project provides a solution to the large upfront costs problem in all-at-once execution of the project.

[ "Efficient energy use" ]
Parent Topic
Child Topic
    No Parent Topic