language-icon Old Web
English
Sign In

Alternating group

In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n). In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n). For n > 1, the group An is the commutator subgroup of the symmetric group Sn with index 2 and has therefore n! / 2 elements. It is the kernel of the signature group homomorphism sgn : Sn → {1, −1} explained under symmetric group. The group An is abelian if and only if n ≤ 3 and simple if and only if n = 3 or n ≥ 5. A5 is the smallest non-abelian simple group, having order 60, and the smallest non-solvable group. The group A4 has a Klein four-group V as a proper normal subgroup, namely the identity and the double transpositions { (), (12)(34), (13)(24), (14)(23) }, and maps to A3 = C3, from the sequence V → A4 → A3 = C3. In Galois theory, this map, or rather the corresponding map S4 → S3, corresponds to associating the Lagrange resolvent cubic to a quartic, which allows the quartic polynomial to be solved by radicals, as established by Lodovico Ferrari. As in the symmetric group, any two elements of An that are conjugate by an element of An must have the same cycle shape. The converse is not necessarily true, however. If the cycle shape consists only of cycles of odd length with no two cycles the same length, where cycles of length one are included in the cycle type, then there are exactly two conjugacy classes for this cycle shape (Scott 1987, §11.1, p299).

[ "Automorphism", "Symmetric group", "Group (mathematics)", "Quaternion group", "Schur multiplier", "SO(8)", "Order (group theory)", "Sporadic group" ]
Parent Topic
Child Topic
    No Parent Topic