language-icon Old Web
English
Sign In

Mural thrombus

A thrombus, colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of cross-linked fibrin protein. The substance making up a thrombus is sometimes called cruor. A thrombus is a healthy response to injury intended to prevent bleeding, but can be harmful in thrombosis, when clots obstruct blood flow through healthy blood vessels.Illustration Comparing Normal Artery vs Diseased Artery with a Blood ClotMicrograph showing a thrombus (center of image) within a blood vessel of the placenta. H&E stain.Illustration depicting thrombus formation over arterial plaque. A thrombus, colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of cross-linked fibrin protein. The substance making up a thrombus is sometimes called cruor. A thrombus is a healthy response to injury intended to prevent bleeding, but can be harmful in thrombosis, when clots obstruct blood flow through healthy blood vessels. Mural thrombi are thrombi that adhere to the wall of a blood vessel. They occur in large vessels such as the heart and aorta, and can restrict blood flow but usually do not block it entirely. They appear grey-red with alternating light and dark lines (known as lines of Zahn) which represent bands of entrapped white blood cells and red blood cells (darker). Virchow's triad describes the pathogenesis of thrombus formation: Disseminated intravascular coagulation (DIC) involves widespread microthrombi formation throughout the majority of the blood vessels. This is due to excessive consumption of coagulation factors and subsequent activation of fibrinolysis using all of the body's available platelets and clotting factors. The end result is hemorrhaging and ischaemic necrosis of tissue/organs. Causes are septicaemia, acute leukaemia, shock, snake bites, fat emboli from broken bones, or other severe traumas. DIC may also be seen in pregnant females. Treatment involves the use of fresh frozen plasma to restore the level of clotting factors in the blood, as well as platelets and heparin to prevent further thrombi formation. Thrombi are classified in three major groups depending on the relative amount of platelets and red blood cells (RBCs). The three major groups are: A thrombus occurs when the hemostatic process, which normally occurs in response to injury, becomes activated in an uninjured or slightly injured vessel. A thrombus in a large blood vessel will decrease blood flow through that vessel (termed a mural thrombus). In a small blood vessel, blood flow may be completely cut off (termed an occlusive thrombus), resulting in death of tissue supplied by that vessel. If a thrombus dislodges and becomes free-floating, it is considered an embolus. Some of the conditions which increase the risk of blood clots developing include atrial fibrillation (a form of cardiac arrhythmia), heart valve replacement, a recent heart attack (also known as a myocardial infarction), extended periods of inactivity (see deep venous thrombosis), and genetic or disease-related deficiencies in the blood's clotting abilities. Platelet activation can occur through different mechanisms such as a vessel wall breach that exposes collagen, or tissue factor encryption. The platelet activation causes a cascade of further platelet activation, eventually causing the formation of the thrombus. This process is regulated through thromboregulation. Blood clot prevention and treatment reduce the risk of stroke, heart attack and pulmonary embolism. Heparin and warfarin are used to inhibit the formation and growth of existing thrombi, with the former used for acute anticoagulation while the latter is used for long-term anticoagulation. The mechanism of action of heparin and warfarin are different as they work on different pathways of the coagulation cascade. Heparin works by binding to and activating the enzyme inhibitor antithrombin III, an enzyme that acts by inactivating thrombin and factor Xa. In contrast, warfarin works by inhibiting vitamin K epoxide reductase, an enzyme needed to synthesize vitamin K dependent clotting factors II, VII, IX, and X. Bleeding time with heparin and warfarin therapy can be measured with the partial thromboplastin time (PTT) and prothrombin time (PT), respectively.

[ "Thrombosis", "Thrombus" ]
Parent Topic
Child Topic
    No Parent Topic