language-icon Old Web
English
Sign In

Thromboxane receptor

1LBN691521390ENSG00000006638ENSMUSG00000034881P21731P30987NM_001060NM_201636NM_001277265NM_009325NM_001358512NP_001051NP_963998NP_001264194NP_033351NP_001345441The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2. The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2. The gene responsible for directing the synthesis of the thromboxane receptor, TBXA2R, is located on chromosome 19 at position p13.3, spans 15 kilobases, and contains 5 exons. TBXA2R codes for a member of the G protein-coupled super family of seven-transmembrane receptors. Molecular biology findings have provided definitive evidence for two human TP receptor subtypes. The originally cloned TP from placenta (343 amino acids in length) is known as the α isoform and the splice variant cloned from endothelium (with 407 amino acids), termed the β isoform. The first 328 amino acids are the same for both isoforms, but the β isoform exhibits an extended C-terminal cytoplasmic domain. Both isoforms stimulate cells in part by activating the Gq family of G proteins. In at least certain cell types, however, TPα also stimulates cells by activating the Gs family of G proteins while TPβ also stimulates cells by activating the Gi class of G proteins. This leads to the stimulation or inhibition, respectively, of adenylate cyclase activity and thereby very different cellular responses. Differences in their C-terminal tail sequence also allow for significant differences in the two receptors internalization and thereby desensitization (i.e. loss of G protein- and therefore cell-stimulating ability) after activation by an agonist; TPβ but not TPα undergoes agonist-induced internalization. The expression of α and β isoforms is not equal within or across different cell types. For example, platelets express high concentrations of the α isoform (and possess residual RNA for the β isoform), while expression of the β isoform has not been documented in these cells. The β isoform is expressed in human endothelium. Furthermore, each TP isoform can physically combine with: a) another of its isoforms to make TPα-TPα or TPβ-TPβ homodimers that promote stronger cell signaling than achieved by their monomer counterparts; b) their opposite isoform to make TPα-TPβ heterodimers that activate more cell signaling pathways than either isoform or homodimer; and c) with the prostacyclin receptor (i.e. IP receptor) to form TP-IP heterodimers that, with respect to TPα-IP heterodimers, trigger particularly intense activation of adenyl cyclase. The latter effect on adenyl cyclase may serve to suppress TPα's cell stimulating actions and thereby some of its potentially deleterious actions. Mice and rats express only the TPα isoform. Since these rodents are used as animal models to define the functions of genes and their products, their failure to have two TP isoforms has limited understanding of the individual and different functions of each TP receptor isoform. Historically, TP receptor involvement in blood platelet function has received the greatest attention. However, it is now clear that TP receptors exhibit a wide distribution in different cell types and among different organ systems. For example, TP receptors have been localized in cardiovascular, reproductive, immune, pulmonary and neurological tissues, among others. Standard prostanoids have the following relative efficacies as receptor ligands in binding to and activating TP: TXA2=PGH2>>PGD2=PGE2=PGF2alpha=PGI2. Since TXA2 is highly unstable, receptor binding and biological studies on TP are conducted with stable TXA2 analogs such as I-BOP and U46619. These two analogs have one-half of their maximal binding capacity and cell-stimulating potency at ~1 and 10-20 nanomolar, respectively; it is assumed that TXA2 and PGH2 (which also is unstable) have binding and cell-stimulating potencies within this range. PGD2, PGE2, PGF2alpha, and PGI2 have binding and stimulating potencies that are >1,000-fold weaker than I-BOP and therefore are assumed not to have appreciable ability to stimulate TP in vivo. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a full agonist and certain isoprostanes, e.g. 8-iso-PGF2 alpha and 8-iso-PGE2, are partial agonists of the TP receptor. In animal models and human tissues, they act through TP to promote platelet responses and stimulate blood vessel contraction. Synthetic analogs of TXA2 that activate TP but are relatively resistant to spontaneous and metabolic degradation include SQ 26655, AGN192093, and EP 171, all of which have binding and activating potencies for TP similar to I-BOP. Several synthetic compounds bind to, but do not activate, TP and thereby inhibit its activation by activating ligands. These receptor antagonists include I-SAP, SQ-29548, S-145, domitroban, and vapiprost, all of which have affinities for binding TP similar to that of I-BOP. Other notable TP receptor antagonists are Seratrodast (AA-2414), Terutroban (S18886), PTA2, 13-APA, GR-32191, Sulotroban (BM-13177), SQ-29,548, SQ-28,668, ONO-3708, Bay U3405, EP-045, BMS-180,291, and S-145. Many of these TP receptor antagonists have been evaluated as potential therapeutic agents for asthma, thrombosis and hypertension. These evaluations indicate that TP receptor antagonists can be more effective than drugs which selectively block the production of TXA2 thromboxane synthase inhibitors. This seemingly paradoxical result may reflect the ability of PGH2, whose production is not blocked by the inhibitors, to substitute for TXA2 in activating TP. Novel TP receptor antagonists that also have activity in reducing TXA2 production by inhibiting cyclooxygenases have been discovered and are in development for testing in animal models. TP is classified as a contractile type of prostenoid receptor based on its ability to contract diverse types of smooth muscle-containing tissues such as those of the lung, intestines, and uterus. TP contracts smooth muscle and stimulates various response in a wide range of other cell tytes by coupling with and mobilizing one or more families of the G protein class of receptor-regulated cell signaling molecules. When bound to TXA2, PGH2, or other of its agonists, TP mobilizes members of the:

[ "Thromboxane", "Antagonist", "Thromboxane A2", "Agonist", "ITGA2B Gene", "Thromboxane A2 Receptor Gene" ]
Parent Topic
Child Topic
    No Parent Topic