language-icon Old Web
English
Sign In

Four-wave mixing

Four-wave mixing (FWM) is an intermodulation phenomenon in non-linear optics, whereby interactions between two or three wavelengths produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming photons is conserved. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by phase matching conditions. Four-wave mixing (FWM) is an intermodulation phenomenon in non-linear optics, whereby interactions between two or three wavelengths produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming photons is conserved. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by phase matching conditions. When three frequencies (f1, f2, and f3) interact in a nonlinear medium, they give rise to a fourth wavelength (f4) which is formed by the scattering of the incident photons, producing the fourth photon. Given inputs f1, f2, and f3, the nonlinear system will produce From calculations with the three input signals, it is found that 12 interfering frequencies are produced, three of which lie on one of original incoming frequencies. Note that these three frequencies which lie at the original incoming frequencies are typically attributed to self-phase modulation and cross-phase modulation, and are naturally phase-matched unlike FWM.

[ "Nonlinear optics", "degenerate four wave mixing", "Mixing (process engineering)" ]
Parent Topic
Child Topic
    No Parent Topic