language-icon Old Web
English
Sign In

Division ring

In abstract algebra, a division ring, also called a skew field, is a ring in which division is possible. Specifically, it is a nonzero ring in which every nonzero element a has a multiplicative inverse, i.e., an element x with a·x = x·a = 1. Stated differently, a ring is a division ring if and only if the group of units equals the set of all nonzero elements. A division ring is a type of noncommutative ring under the looser definition where noncommutative ring refers to rings which are not necessarily commutative.All fields are division rings; more interesting examples are the non-commutative division rings. The best known example is the ring of quaternions H. If we allow only rational instead of real coefficients in the constructions of the quaternions, we obtain another division ring. In general, if R is a ring and S is a simple module over R, then, by Schur's lemma, the endomorphism ring of S is a division ring; every division ring arises in this fashion from some simple module.Wedderburn's little theorem: All finite division rings are commutative and therefore finite fields. (Ernst Witt gave a simple proof.)Division rings used to be called 'fields' in an older usage. In many languages, a word meaning 'body' is used for division rings, in some languages designating either commutative or non-commutative division rings, while in others specifically designating commutative division rings (what we now call fields in English). A more complete comparison is found in the article Field (mathematics).

[ "Combinatorics", "Algebra", "Topology", "Pure mathematics", "Discrete mathematics" ]
Parent Topic
Child Topic
    No Parent Topic