language-icon Old Web
English
Sign In

Photoacoustic effect

The photoacoustic effect or optoacoustic effect is the formation of sound waves following light absorption in a material sample. In order to obtain this effect the light intensity must vary, either periodically (modulated light) or as a single flash (pulsed light). The photoacoustic effect is quantified by measuring the formed sound (pressure changes) with appropriate detectors, such as microphones or piezoelectric sensors. The time variation of the electric output (current or voltage) from these detectors is the photoacoustic signal. These measurements are useful to determine certain properties of the studied sample. For example, in photoacoustic spectroscopy, the photoacoustic signal is used to obtain the actual absorption of light in either opaque or transparent objects. It is useful for substances in extremely low concentrations, because very strong pulses of light from a laser can be used to increase sensitivity and very narrow wavelengths can be used for specificity. Furthermore, photoacoustic measurements serve as a valuable research tool in the study of the heat evolved in photochemical reactions (see: photochemistry), particularly in the study of photosynthesis. The photoacoustic effect or optoacoustic effect is the formation of sound waves following light absorption in a material sample. In order to obtain this effect the light intensity must vary, either periodically (modulated light) or as a single flash (pulsed light). The photoacoustic effect is quantified by measuring the formed sound (pressure changes) with appropriate detectors, such as microphones or piezoelectric sensors. The time variation of the electric output (current or voltage) from these detectors is the photoacoustic signal. These measurements are useful to determine certain properties of the studied sample. For example, in photoacoustic spectroscopy, the photoacoustic signal is used to obtain the actual absorption of light in either opaque or transparent objects. It is useful for substances in extremely low concentrations, because very strong pulses of light from a laser can be used to increase sensitivity and very narrow wavelengths can be used for specificity. Furthermore, photoacoustic measurements serve as a valuable research tool in the study of the heat evolved in photochemical reactions (see: photochemistry), particularly in the study of photosynthesis. Most generally, electromagnetic radiation of any kind can give rise to a photoacoustic effect. This includes the whole range of electromagnetic frequencies, from gamma radiation and X-rays to microwave and radio. Still, much of the reported research and applications, utilizing the photoacoustic effect, is concerned with the near ultraviolet/visible and infrared spectral regions. The discovery of the photoacoustic effect dates back to 1880, when Alexander Graham Bell was experimenting with long-distance sound transmission. Through his invention, called 'photophone', he transmitted vocal signals by reflecting sun-light from a moving mirror to a selenium solar cell receiver. As a byproduct of this investigation, he observed that sound waves were produced directly from a solid sample when exposed to beam of sunlight that was rapidly interrupted with a rotating slotted wheel. He noticed that the resulting acoustic signal was dependent on the type of the material and correctly reasoned that the effect was caused by the absorbed light energy, which subsequently heats the sample. Later Bell showed that materials exposed to the non-visible (ultra-violet and infra-red) portions of the solar spectrum can also produce sounds and invented a device, which he called 'spectrophone', to apply this effect for spectral identification of materials. Bell himself and later John Tyndall and Wilhelm Röntgen extended these experiments, demonstrating the same effect in liquids and gases. However, the results were too crude, dependent on ear detection, and this technique was soon abandoned. The application of the photoacoustic effect had to wait until the development of sensitive sensors and intense light sources. In 1938 Mark Leonidovitch Veingerov revived the interest in the photoacoustic effect, being able to use it in order to measure very small carbon dioxide concentration in nitrogen gas (as low as 0.2% in volume). Since then research and applications grew faster and wider, acquiring several fold more detection sensitivity. While the heating effect of the absorbed radiation was considered to be the prime cause of the photoacoustic effect, it was shown in 1978 that gas evolution resulting from a photochemical reaction can also cause a photoacoustic effect. Independently, considering the apparent anomalous behaviour of the photoacoustic signal from a plant leaf, which could not be explained solely by the heating effect of the exciting light, led to the cognition that photosynthetic oxygen evolution is normally a major contributor to the photoacoustic signal in this case. Although much of the literature on the subject is concerned with just one mechanism, there are actually several different mechanisms that produce the photoacoustic effect. The primary universal mechanism is photothermal, based on the heating effect of the light and the consequent expansion of the light-absorbing material. In detail, the photothermal mechanism consists of the following stages: The main physical picture, in this case, envisions the original temperature pulsations as origins of propagating temperature waves ('thermal waves'), which travel in the condensed phase, ultimately reaching the surrounding gaseous phase. The resulting temperature pulsations in the gaseous phase are the prime cause of the pressure changes there. The amplitude of the traveling thermal wave decreases strongly (exponentially) along its propagation direction, but if its propagation distance in the condensed phase is not too long, its amplitude near the gaseous phase is sufficient to create detectable pressure changes. This property of the thermal wave confers unique features to the detection of light absorption by the photoacoustic method. The temperature and pressure changes involved are minute, compared to everyday scale – typical order of magnitude for the temperature changes, using ordinary light intensities, is about micro to milli-degrees and for the resulting pressure changes is about nano to micro-bars. The photothermal mechanism manifests itself, besides the photoacoustic effect, also by other physical changes, notably emission of infra-red radiation and changes in the refraction index. Correspondingly, it may be detected by various other means, described by terms such as 'photothermal radiometry', 'thermal lens' and 'thermal beam deflection' (popularly also known as 'mirage' effect) (see Photothermal spectroscopy. These methods parallel the photoacoustic detection. However, each method has its special range of application. While the photothermal mechanism is universal, there could exist additional other mechanisms, superimposed on the photothermal mechanism, which may contribute significantly to the photoacoustic signal. These mechanisms are generally related to photophysical processes and photochemical reactions following light absorption: (1) change in the material balance of the sample and/or the gaseous phase around the sample; (2) change in the molecular organization, which results in molecular volume changes. Most prominent examples for these two kinds of mechanisms are in photosynthesis The first mechanism above is mostly conspicuous in a photosynthesizing plant leaf. There, the light induced oxygen evolution causes pressure changes in the air phase, resulting in a photoacoustic signal, which is comparable in magnitude to that caused by the photothermal mechanism. This mechanism was tentatively named 'photobaric'. The second mechanism shows up in photosynthetically active sub-cell complexes in suspension (e.g. photosynthetic reaction centers). There, the electric field which is formed in the reaction center, following the light induced electron transfer process, causes a micro electrostriction effect with a change in the molecular volume. This, in turn, induces a pressure wave which propagates in the macroscopic medium. Another case for this mechanism is Bacteriorhodopsin proton pump. Here the light induced change in the molecular volume is caused by conformational changes that occur in this protein following light absorption.

[ "Photoacoustic imaging in biomedicine", "Laser", "Signal", "photoacoustic cell" ]
Parent Topic
Child Topic
    No Parent Topic