language-icon Old Web
English
Sign In

Color superconductivity

Color superconductivity is a phenomenon predicted to occur in quark matter if the baryon density is sufficiently high (well above nuclear density) and the temperature is not too high (well below 1012 kelvin). Color superconducting phases are to be contrasted with the normal phase of quark matter, which is just a weakly interacting Fermi liquid of quarks. Color superconductivity is a phenomenon predicted to occur in quark matter if the baryon density is sufficiently high (well above nuclear density) and the temperature is not too high (well below 1012 kelvin). Color superconducting phases are to be contrasted with the normal phase of quark matter, which is just a weakly interacting Fermi liquid of quarks. In theoretical terms, a color superconducting phase is a state in which the quarks near the Fermi surface become correlated in Cooper pairs, which condense. In phenomenological terms, a color superconducting phase breaks some of the symmetries of the underlying theory, and has a very different spectrum of excitations and very different transport properties from the normal phase. It is well known that at low temperature many metals become superconductors. A metal can be viewed as a Fermi liquid of electrons, and below a critical temperature, an attractive phonon-mediated interaction between the electrons near the Fermi surface causes them to pair up and form a condensate of Cooper pairs, which via the Anderson-Higgs mechanism makes the photon massive, leading to the characteristic behaviors of a superconductor; infinite conductivity and the exclusion of magnetic fields (Meissner effect). The crucial ingredients for this to occur are:

[ "Strange matter", "Color–flavor locking" ]
Parent Topic
Child Topic
    No Parent Topic