language-icon Old Web
English
Sign In

1-planar graph

In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph. In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph. 1-planar graphs were first studied by Ringel (1965), who showed that they can be colored with at most seven colors. Later, the precise number of colors needed to color these graphs, in the worst case, was shown to be six. The example of the complete graph K6, which is 1-planar, shows that 1-planar graphs may sometimes require six colors. However, the proof that six colors are always enough is more complicated. Ringel's motivation was in trying to solve a variation of total coloring for planar graphs, in which one simultaneously colors the vertices and faces of a planar graph in such a way that no two adjacent vertices have the same color, no two adjacent faces have the same color, and no vertex and face that are adjacent to each other have the same color. This can obviously be done using eight colors by applying the four color theorem to the given graph and its dual graph separately, using two disjoint sets of four colors. However, fewer colors may be obtained by forming an auxiliary graph that has a vertex for each vertex or face of the given planar graph, and in which two auxiliary graph vertices are adjacent whenever they correspond to adjacent features of the given planar graph. A vertex coloring of the auxiliary graph corresponds to a vertex-face coloring of the original planar graph. This auxiliary graph is 1-planar, from which it follows that Ringel's vertex-face coloring problem may also be solved with six colors. The graph K6 cannot be formed as an auxiliary graph in this way, but nevertheless the vertex-face coloring problem also sometimes requires six colors; for instance, if the planar graph to be colored is a triangular prism, then its eleven vertices and faces require six colors, because no three of them may be given a single color. Every 1-planar graph with n vertices has at most 4n − 8 edges. More strongly, each 1-planar drawing has at most n − 2 crossings; removing one edge from each crossing pair of edges leaves a planar graph, which can have at most 3n − 6 edges, from which the 4n − 8 bound on the number of edges in the original 1-planar graph immediately follows. However, unlike planar graphs (for which all maximal planar graphs on a given vertex set have the same number of edges as each other), there exist maximal 1-planar graphs (graphs to which no additional edges can be added while preserving 1-planarity) that have significantly fewer than 4n − 8 edges. The bound of 4n − 8 on the maximum possible number of edges in a 1-planar graph can be used to show that the complete graph K7 on seven vertices is not 1-planar, because this graph has 21 edges and in this case 4n − 8 = 20 < 21. A 1-planar graph is said to be an optimal 1-planar graph if it has exactly 4n − 8 edges, the maximum possible. In a 1-planar embedding of an optimal 1-planar graph, the uncrossed edges necessarily form a quadrangulation (a polyhedral graph in which every face is a quadrilateral). Every quadrangulation gives rise to an optimal 1-planar graph in this way, by adding the two diagonals to each of its quadrilateral faces. It follows that every optimal 1-planar graph is Eulerian (all of its vertices have even degree), that the minimum degree in such a graph is six, and that every optimal 1-planar graph has at least eight vertices of degree exactly six. Additionally, every optimal 1-planar graph is 4-vertex-connected, and every 4-vertex cut in such a graph is a separating cycle in the underlying quadrangulation. The graphs that have straight 1-planar drawings (that is, drawings in which each edge is represented by a line segment, and in which each line segment is crossed by at most one other edge) have a slightly tighter bound of 4n − 9 on the maximum number of edges, achieved by infinitely many graphs. A complete classification of the 1-planar complete graphs, complete bipartite graphs, and more generally complete multipartite graphs is known. Every complete bipartite graph of the form K2,n is 1-planar, as is every complete tripartite graph of the form K1,1,n. Other than these infinite sets of examples, the only complete multipartite 1-planar graphs are K6, K1,1,1,6, K1,1,2,3, K2,2,2,2, K1,1,1,2,2, and their subgraphs. The minimal non-1-planar complete multipartite graphs are K3,7, K4,5, K1,3,4, K2,3,3, and K1,1,1,1,3.For instance, the complete bipartite graph K3,6 is 1-planar because it is a subgraph of K1,1,1,6, but K3,7 is not 1-planar. It is NP-complete to test whether a given graph is 1-planar, and it remains NP-complete even for the graphs formed from planar graphs by adding a single edge and for graphs of bounded bandwidth. The problem is fixed-parameter tractable when parameterized by cyclomatic number or by tree-depth, so it may be solved in polynomial time when those parameters are bounded. In contrast to Fáry's theorem for planar graphs, not every 1-planar graph may be drawn 1-planarly with straight line segments for its edges. However, testing whether a 1-planar drawing may be straightened in this way can be done in polynomial time. Additionally, every 3-vertex-connected 1-planar graph has a 1-planar drawing in which at most one edge, on the outer face of the drawing, has a bend in it. This drawing can be constructed in linear time from a 1-planar embedding of the graph. The 1-planar graphs have bounded book thickness, but some 1-planar graphs including K2,2,2,2 have book thickness at least four.

[ "Graph", "Chordal graph", "Line graph", "Comparability graph", "Series-parallel graph", "Cograph", "Maximal independent set", "Topological graph theory" ]
Parent Topic
Child Topic
    No Parent Topic