language-icon Old Web
English
Sign In

AIDS dementia complex

HIV-associated neurocognitive disorders (HAND) are neurological disorders associated with HIV infection and AIDS. HAND may include neurological disorders of various severity. HIV-associated neurocognitive disorders are associated with a metabolic encephalopathy induced by HIV infection and fueled by immune activation of macrophages and microglia. These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of ADC are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss. HIV-associated neurocognitive disorders (HAND) are neurological disorders associated with HIV infection and AIDS. HAND may include neurological disorders of various severity. HIV-associated neurocognitive disorders are associated with a metabolic encephalopathy induced by HIV infection and fueled by immune activation of macrophages and microglia. These cells are actively infected with HIV and secrete neurotoxins of both host and viral origin. The essential features of ADC are disabling cognitive impairment accompanied by motor dysfunction, speech problems and behavioral change. Cognitive impairment is characterised by mental slowness, trouble with memory and poor concentration. Motor symptoms include a loss of fine motor control leading to clumsiness, poor balance and tremors. Behavioral changes may include apathy, lethargy and diminished emotional responses and spontaneity. Histopathologically, it is identified by the infiltration of monocytes and macrophages into the central nervous system (CNS), gliosis, pallor of myelin sheaths, abnormalities of dendritic processes and neuronal loss. ADC typically occurs after years of HIV infection and is associated with low CD4+ T cell levels and high plasma viral loads. It is sometimes seen as the first sign of the onset of AIDS. Prevalence is between 10–24% in Western countries and has only been seen in 1–2% of India-based infections. With the advent of highly active antiretroviral therapy (HAART), the incidence of ADC has declined in developed countries, although its prevalence is increasing. HAART may prevent or delay the onset of ADC in people with HIV infection, and may also improve mental function in people who already have ADC. Dementia only exists when neurocognitive impairment in the patient is severe enough to interfere markedly with day-to-day function. That is, the patient is typically unable to work and may not be able to take care of him or herself. Before this, the patient is said to have a mild neurocognitive disorder. While the progression of dysfunction is variable, it is regarded as a serious complication and untreated can progress to a fatal outcome. Diagnosis is made by neurologists who carefully rule out alternative diagnoses. This routinely requires a careful neurological examination, brain scans (MRI or CT scan) and a lumbar puncture to evaluate the cerebrospinal fluid. No single test is available to confirm the diagnosis, but the constellation of history, laboratory findings and examination can reliably establish the diagnosis when performed by experienced clinicians. The amount of virus in the brain does not correlate well with the degree of dementia, suggesting that secondary mechanisms are also important in the manifestation of ADC. AIDS dementia complex (ADC) is not a true opportunistic infection; it is one of the few conditions caused directly by HIV itself. However, the cause of ADC can be difficult to discern because the central nervous system can be damaged by a number of other causes related to HIV infection: Many researchers believe that HIV damages the vital brain cells, neurons, indirectly. According to one theory, HIV either infects or activates cells that protect the brain, known as macrophages and microglia. These cells then produce toxins that can set off a series of reactions that instruct neurons to kill themselves. The infected macrophages and microglia also appear to produce additional factors such as chemokines and cytokines that can affect neurons as well as other brain cells known as astrocytes. The affected astrocytes, which normally nurture and protect neurons, also may now end up harming neurons. HIV protein gp120 inhibits the stem cells in the brain from producing new nerve cells. In the neuronal cells, the HIV gp120 induces mitochondrial-death proteins like caspases, which may influence the upregulation of the death receptor Fas leading to apoptosis. HIV enters the brain early on in the infection. It is thought that HIV uses a 'Trojan horse' mechanism to enter the brain. Normally, the blood–brain barrier (BBB) serves as a protective mechanism by preventing entry of foreign substances; disruption of the BBB by HIV contributes to the progression of infection. The virus is able to enter the brain through infected cells that pass through the BBB to replace the immune cells surrounding the blood supply in the brain. When infected, immune cells are able to better migrate into tissues compared to uninfected cells. Infected microglia add to the production of the virus. This activation of the microglia may contribute to the process of neuropathogenesis that spreads the infection to nearby cells. Other cells that can get infected include the astrocytes, which can trigger bystander cellular dysfunction and apoptosis, further compromising the blood–brain barrier. The toxicity spreads through a gap junction-dependent mechanism. HIV is associated with pathological changes in mainly subcortical and fronto-striatal areas of the brain, including the basal ganglia, deep white matter, and hippocampal regions. Neuroimaging studies of HIV patients indicate that significant volume reductions are apparent in the frontal white matter, whereas subcortically, hypertrophy is apparent in the basal ganglia, especially the putamen. Moreover, the results of some studies suggest loss of brain volume in cortical and subcortical regions even in asymptomatic HIV patients and patients who were on stable treatment. A recent longitudinal study of a small representative cohort of HIV-positive patients on stable medication regiments suggests that this cortical atrophy is progressive, and is in part related to nadir CD4. Cerebral brain volume is associated with factors related to duration of the disease and CD4 nadir; patients with a longer history of chronic HIV and higher CD4 nadir loss present with greater cerebral atrophy. CD4 lymphocyte counts have also been related to greater rates of brain tissue loss. Current factors, such as plasma HIV RNA, have been found to be associated with brain volumes as well, especially with regards to basal ganglia volume and total white matter. Changes in the brain may be ongoing but asymptomatic, that is with minimal interference in functioning, making it difficult to diagnose HIV-associated neurocognitive disorders in the early stages.

[ "Dementia", "Viral disease", "human immunodeficiency virus", "HIV/AIDS", "Virus-Cell Interaction", "HIV superinfection", "Whoonga", "HIV-associated lipodystrophy", "AIDS-defining clinical condition" ]
Parent Topic
Child Topic
    No Parent Topic