language-icon Old Web
English
Sign In

Metric signature

The signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, zero, and negative eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In physics, the v represents for the time or virtual dimension, and the p for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis. The signature thus classifies the metric up to a choice of basis. The signature is often denoted by a pair of integers (v, p) implying r = 0 or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signature (1, 3, 0), respectively. The signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, zero, and negative eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In physics, the v represents for the time or virtual dimension, and the p for the space and physical dimension. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis. The signature thus classifies the metric up to a choice of basis. The signature is often denoted by a pair of integers (v, p) implying r = 0 or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signature (1, 3, 0), respectively. The signature is said to be indefinite or mixed if both v and p are nonzero, and degenerate if r is nonzero. A Riemannian metric is a metric with a positive definite signature (v, p). The Lorentzian metric is a metric signature (v, p) with two eigenvalues. There is another notion of signature of a nondegenerate metric tensor given by a single number s defined as (v−p), where v and p are as above, which is equivalent to the above definition when the dimension n = v + p is given or implicit. For example, s = 1 − 3 = −2 for (+, −, −, −) and its mirroring s' = −s = +2 for (−, +, +, +). The signature of a metric tensor is defined as the signature of the corresponding quadratic form. It is the number (v, p, r) of positive and zero eigenvalues of any matrix (i.e. in any basis for the underlying vector space) representing the form, counted with their algebraic multiplicity. Usually, r = 0 is required, which is the same as saying a metric tensor must be nondegenerate, i.e. no nonzero vector is orthogonal to all vectors. By Sylvester's law of inertia, the numbers (v, p, r) are basis independent. By the spectral theorem a symmetric n × n matrix over the reals is always diagonalizable, and has therefore exactly n real eigenvalues (counted with algebraic multiplicity). Thus v + p = n = dim(V). According to Sylvester's law of inertia, the signature of the scalar product (a.k.a. real symmetric bilinear form), g does not depend on the choice of basis. Moreover, for every metric g of signature (v, p, r) there exists a basis such that gab = +1 for a = b = 1, ..., v, gab = −1 for a = b = v + 1, ..., v + p and gab = 0 otherwise. It follows that there exists an isometry (V1, g1) → (V2, g2) if and only if the signatures of g1 and g2 are equal. Likewise the signature is equal for two congruent matrices and classifies a matrix up to congruency. Equivalently, the signature is constant on the orbits of the general linear group GL(V) on the space of symmetric rank 2 contravariant tensors S2V∗ and classifies each orbit. The number v (resp. p) is the maximal dimension of a vector subspace on which the scalar product g is positive-definite (resp. negative-definite), and r is the dimension of the radical of the scalar product g or the null subspace of symmetric matrix gab of the scalar product. Thus a nondegenerate scalar product has signature (v, p, 0), with v + p = n. A duality of the special cases (v, p, 0) correspond to two scalar eigenvalues which can be transformed into each other by the mirroring reciprocally. The signature of the n × n identity matrix is (v, p, 0) where n = v + p. The diagonal matrix of a signature is the number of positive, negative and zero numbers on its main diagonal.

[ "Fundamental theorem of Riemannian geometry", "Intrinsic metric", "Fisher information metric", "Metric map", "Equivalence of metrics" ]
Parent Topic
Child Topic
    No Parent Topic