language-icon Old Web
English
Sign In

Nanoremediation

Nanoremediation is the use of nanoparticles for environmental remediation. It is being explored to treat ground water, wastewater, soil, sediment, or other contaminated environmental materials.Nanoremediation is an emerging industry; by 2009, nanoremediation technologies had been documented in at least 44 cleanup sites around the world, predominantly in the United States. In Europe, nanoremediation is being investigated by the EC funded NanoRem Project. A report produced by the NanoRem consortium has identified around 70 nanoremediation projects worldwide at pilot or full scale. During nanoremediation, a nanoparticle agent must be brought into contact with the target contaminant under conditions that allow a detoxifying or immobilizing reaction. This process typically involves a pump-and-treat process or in situ application. Nanoremediation is the use of nanoparticles for environmental remediation. It is being explored to treat ground water, wastewater, soil, sediment, or other contaminated environmental materials.Nanoremediation is an emerging industry; by 2009, nanoremediation technologies had been documented in at least 44 cleanup sites around the world, predominantly in the United States. In Europe, nanoremediation is being investigated by the EC funded NanoRem Project. A report produced by the NanoRem consortium has identified around 70 nanoremediation projects worldwide at pilot or full scale. During nanoremediation, a nanoparticle agent must be brought into contact with the target contaminant under conditions that allow a detoxifying or immobilizing reaction. This process typically involves a pump-and-treat process or in situ application. Some nanoremediation methods, particularly the use of nano zero-valent iron for groundwater cleanup, have been deployed at full-scale cleanup sites. Other methods remain in research phases. Nanoremediation has been most widely used for groundwater treatment, with additional extensive research in wastewater treatment. Nanoremediation has also been tested for soil and sediment cleanup. Even more preliminary research is exploring the use of nanoparticles to remove toxic materials from gases. Currently, groundwater remediation is the most common commercial application of nanoremediation technologies.Using nanomaterials, especially zero-valent metals (ZVMs), for groundwater remediation is an emerging approach that is promising due to the availability and effectiveness of many nanomaterials for degrading or sequestering contaminants. Nanotechnology offers the potential to effectively treat contaminants in situ, avoiding excavation or the need to pump contaminated water out of the ground. The process begins with nanoparticles being injected into a contaminated aquifer via an injection well. The nanoparticles are then transported by groundwater flow to the source of contamination. Upon contact, nanoparticles can sequester contaminants (via adsorption or complexation), immobilizing them, or they can degrade the contaminants to less harmful compounds. Contaminant transformations are typically redox reactions. When the nanoparticle is the oxidant or reductant, it is considered reactive. The ability to inject nanoparticles to the subsurface and transport them to the contaminant source is imperative for successful treatment. Reactive nanoparticles can be injected into a well where they will then be transported down gradient to the contaminated area. Drilling and packing a well is quite expensive. Direct push wells cost less than drilled wells and are the most often used delivery tool for remediation with nanoiron. A nanoparticle slurry can be injected along the vertical range of the probe to provide treatment to specific aquifer regions. The use of various nanomaterials, including carbon nanotubes and TiO2, shows promise for treatment of surface water, including for purification, disinfection, and desalination. Target contaminants in surface waters include heavy metals, organic contaminants, and pathogens. In this context, nanoparticles may be used as sorbents, as reactive agents (photocatalysts or redox agents), or in membranes used for nanofiltration. Nanoparticles may assist in detecting trace levels of contaminants in field settings, contributing to effective remediation. Instruments that can operate outside of a laboratory often are not sensitive enough to detect trace contaminants. Rapid, portable, and cost-effective measurement systems for trace contaminants in groundwater and other environmental media would thus enhance contaminant detection and cleanup. One potential method is to separate the analyte from the sample and concentrate them to a smaller volume, easing detection and measurement. When small quantities of solid sorbents are used to absorb the target for concentration, this method is referred to as solid-phase microextraction. With their high reactivity and large surface area, nanoparticles may be effective sorbents to help concentrate target contaminants for solid-phase microextraction, particularly in the form of self-assembled monolayers on mesoporous supports. The mesoporous silica structure, made through a surfactant templated sol-gel process, gives these self-assembled monolayers high surface area and a rigid open pore structure. This material may be an effective sorbent for many targets, including heavy metals such as mercury, lead, and cadmium, chromate and arsenate, and radionuclides such as 99Tc, 137CS, uranium, and the actinides.

[ "Zerovalent iron", "Groundwater", "Nanomaterials", "Nanoparticle", "Environmental remediation" ]
Parent Topic
Child Topic
    No Parent Topic