language-icon Old Web
English
Sign In

Algebraic K-theory

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers. Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers. K-theory was invented in the late 1950s by Alexander Grothendieck in his study of intersection theory on algebraic varieties. In the modern language, Grothendieck defined only K0, the zeroth K-group, but even this single group has plenty of applications, such as the Grothendieck–Riemann–Roch theorem. Intersection theory is still a motivating force in the development of (higher) algebraic K-theory through its links with motivic cohomology and specifically Chow groups. The subject also includes classical number-theoretic topics like quadratic reciprocity and embeddings of number fields into the real numbers and complex numbers, as well as more modern concerns like the construction of higher regulators and special values of L-functions. The lower K-groups were discovered first, in the sense that adequate descriptions of these groups in terms of other algebraic structures were found. For example, if F is a field, then K0(F) is isomorphic to the integers Z and is closely related to the notion of vector space dimension. For a commutative ring R, K0(R) is related to the Picard group of R, and when R is the ring of integers in a number field, this generalizes the classical construction of the class group. The group K1(R) is closely related to the group of units R×, and if R is a field, it is exactly the group of units. For a number field F, K2(F) is related to class field theory, the Hilbert symbol, and the solvability of quadratic equations over completions. In contrast, finding the correct definition of the higher K-groups of rings was a difficult achievement of Daniel Quillen, and many of the basic facts about the higher K-groups of algebraic varieties were not known until the work of Robert Thomason. The history of K-theory was detailed by Charles Weibel. In the 19th century, Bernhard Riemann and his student Gustav Roch proved what is now known as the Riemann–Roch theorem. If X is a Riemann surface, then the sets of meromorphic functions and meromorphic differential forms on X form vector spaces. A line bundle on X determines subspaces of these vector spaces, and if X is projective, then these subspaces are finite dimensional. The Riemann–Roch theorem states that the difference in dimensions between these subspaces is equal to the degree of the line bundle (a measure of twistedness) plus one minus the genus of X. In the mid-20th century, the Riemann–Roch theorem was generalized by Friedrich Hirzebruch to all algebraic varieties. In Hirzebruch's formulation, the Hirzebruch–Riemann–Roch theorem, the theorem became a statement about Euler characteristics: The Euler characteristic of a vector bundle on an algebraic variety (which is the alternating sum of the dimensions of its cohomology groups) equals the Euler characteristic of the trivial bundle plus a correction factor coming from characteristic classes of the vector bundle. This is a generalization because on a projective Riemann surface, the Euler characteristic of a line bundle equals the difference in dimensions mentioned previously, the Euler characteristic of the trivial bundle is one minus the genus, and the only non-trivial characteristic class is the degree. The subject of K-theory takes its name from a 1957 construction of Alexander Grothendieck which appeared in the Grothendieck–Riemann–Roch theorem, his generalization of Hirzebruch's theorem. Let X be a smooth algebraic variety. To each vector bundle on X, Grothendieck associates an invariant, its class. The set of all classes on X was called K ( X ) {displaystyle K(X)} from the German Klasse. By definition, K ( X ) {displaystyle K(X)} is a quotient of the free abelian group on isomorphism classes of vector bundles on X, and so it is an abelian group. If the basis element corresponding to a vector bundle V is denoted , then for each short exact sequence of vector bundles: Grothendieck imposed the relation [ V ] = [ V ′ ] + [ V ″ ] {displaystyle =+} . These generators and relations define K ( X ) {displaystyle K(X)} , and they imply that it is the universal way to assign invariants to vector bundles in a way compatible with exact sequences. Grothendieck took the perspective that the Riemann–Roch theorem is a statement about morphisms of varieties, not the varieties themselves. He proved that there is a homomorphism from K ( X ) {displaystyle K(X)} to the Chow groups of X coming from the Chern character and Todd class of X. Additionally, he proved that a proper morphism f : X → Y {displaystyle fcolon X o Y} to a smooth variety Y determines a homomorphism f ∗ : K ( X ) → K ( Y ) {displaystyle f_{*}colon K(X) o K(Y)} called the pushforward. This gives two ways of determining an element in the Chow group of Y from a vector bundle on X: Starting from X, one can first compute the pushforward in K-theory and then apply the Chern character and Todd class of Y, or one can first apply the Chern character and Todd class of X and then compute the pushforward for Chow groups. The Grothendieck–Riemann–Roch theorem says that these are equal. When Y is a point, a vector bundle is a vector space, the class of a vector space is its dimension, and the Grothendieck–Riemann–Roch theorem specializes to Hirzebruch's theorem. The group K(X) is now known as K0(X). Upon replacing vector bundles by projective modules, K0 also became defined for non-commutative rings, where it had applications to group representations. Atiyah and Hirzebruch quickly transported Grothendieck's construction to topology and used it to define topological K-theory. Topological K-theory was one of the first examples of an extraordinary cohomology theory: It associates to each topological space X (satisfying some mild technical constraints) a sequence of groups Kn(X) which satisfy all the Eilenberg–Steenrod axioms except the normalization axiom. The setting of algebraic varieties, however, is much more rigid, and the flexible constructions used in topology were not available. While the group K0 seemed to satisfy the necessary properties to be the beginning of a cohomology theory of algebraic varieties and of non-commutative rings, there was no clear definition of the higher Kn(X). Even as such definitions were developed, technical issues surrounding restriction and gluing usually forced Kn to be defined only for rings, not for varieties.

[ "Real algebraic geometry", "Dimension of an algebraic variety", "Algebraic surface", "Algebraic cycle", "Algebraic number", "Waldhausen category", "Farrell–Jones conjecture" ]
Parent Topic
Child Topic
    No Parent Topic