language-icon Old Web
English
Sign In

Barr body

A Barr body (named after discoverer Murray Barr) is the inactive X chromosome in a female somatic cell, rendered inactive in a process called lyonization, in those species in which sex is determined by the presence of the Y (including humans) or W chromosome rather than the diploidy of the X. The Lyon hypothesis states that in cells with multiple X chromosomes, all but one are inactivated during mammalian embryogenesis. This happens early in embryonic development at random in mammals, except in marsupials and in some extra-embryonic tissues of some placental mammals, in which the father's X chromosome is always deactivated. A Barr body (named after discoverer Murray Barr) is the inactive X chromosome in a female somatic cell, rendered inactive in a process called lyonization, in those species in which sex is determined by the presence of the Y (including humans) or W chromosome rather than the diploidy of the X. The Lyon hypothesis states that in cells with multiple X chromosomes, all but one are inactivated during mammalian embryogenesis. This happens early in embryonic development at random in mammals, except in marsupials and in some extra-embryonic tissues of some placental mammals, in which the father's X chromosome is always deactivated. In humans with more than one X chromosome, the number of Barr bodies visible at interphase is always one fewer than the total number of X chromosomes. For example, men with Klinefelter syndrome (47,XXY karyotype) have a single Barr body, whereas women with a 47, XXX karyotype have two Barr bodies. Barr bodies can be seen in the nucleus of neutrophils, at the rim of the nucleus in female somatic cells between divisions. A genotypical human female has only one Barr body per somatic cell, while a genotypical human male has none. Mammalian X-chromosome inactivation is initiated from the X inactivation centre or Xic, usually found near the centromere. The center contains twelve genes, seven of which code for proteins, five for untranslated RNAs, of which only two are known to play an active role in the X inactivation process, Xist and Tsix. The centre also appears to be important in chromosome counting: ensuring that random inactivation only takes place when two or more X-chromosomes are present. The provision of an extra artificial Xic in early embryogenesis can induce inactivation of the single X found in male cells. The roles of Xist and Tsix appear to be antagonistic. The loss of Tsix expression on the future inactive X chromosome results in an increase in levels of Xist around the Xic. Meanwhile, on the future active X Tsix levels are maintained; thus the levels of Xist remain low. This shift allows Xist to begin coating the future inactive chromosome, spreading out from the Xic. In non-random inactivation this choice appears to be fixed and current evidence suggests that the maternally inherited gene may be imprinted. Variations in Xi frequency have been reported with age, pregnancy, the use of oral contraceptives, fluctuations in menstrual cycle and neoplasia. It is thought that this constitutes the mechanism of choice, and allows downstream processes to establish the compact state of the Barr body. These changes include histone modifications, such as histone H3 methylation (i.e. H3K27me3 by PRC2 which is recruited by Xist) and histone H2A ubiquitination, as well as direct modification of the DNA itself, via the methylation of CpG sites. These changes help inactivate gene expression on the inactive X-chromosome and to bring about its compaction to form the Barr body. Reactivation of a Barr body is also possible, and has been seen in breast cancer patients. One study showed that the frequency of Barr bodies in breast carcinoma were significantly lower than in healthy controls, indicating reactivation of these once inactivated X chromosomes.

[ "X chromosome", "X-inactivation" ]
Parent Topic
Child Topic
    No Parent Topic