language-icon Old Web
English
Sign In

Phosphine oxide

Phosphine oxides are phosphorus compounds with the formula OPX3. When X = alkyl or aryl, these are organophosphine oxides. Triphenylphosphine oxide is an example. An inorganic phosphine oxide is phosphoryl chloride (POCl3). Such compounds are thermally stable, decomposing only above 450 °C. Phosphoryl refers to a functional group drawn with a phosphorus-oxygen double bond. Phosphine oxides are phosphorus compounds with the formula OPX3. When X = alkyl or aryl, these are organophosphine oxides. Triphenylphosphine oxide is an example. An inorganic phosphine oxide is phosphoryl chloride (POCl3). Such compounds are thermally stable, decomposing only above 450 °C. Phosphoryl refers to a functional group drawn with a phosphorus-oxygen double bond. Phosphine oxides feature tetrahedral phosphorus centers. The P-O bond is short and polar. According to molecular orbital theory, the short P–O bond is attributed to the donation of the lone pair electrons from oxygen p-orbitals to the antibonding phosphorus-carbon bonds; This proposal, which is supported by ab initio calculations, has gained consensus in the chemistry community. The nature of the P–O bond was once hotly debated. Some discussions invoked a role for phosphorus-centered d-orbitals in bonding, but this analysis is not supported by computational analyses. In terms of simple Lewis structure, the bond is more accurately represented as a dative bond, as is currently used to depict an amine oxide. Phosphine oxides are generated as a by-product of the Wittig reaction:

[ "Phosphine", "Cyanex 921", "Chloromethyl phosphine" ]
Parent Topic
Child Topic
    No Parent Topic