language-icon Old Web
English
Sign In

Spectral flux density

In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric measure, as distinct from measures that characterize light in terms of the brightness to the eye, or photons. In SI units it is measured in W m−3, although it can be more practical to use W m−2 nm−1 (1 W m−2 nm−1 = 1 GW m−3 = 1 W mm−3) or W m−2 μm−1 (1 W m−2 μm−1 = 1 MW m−3), W·m−2·Hz−1, Jansky or solar flux units. The terms irradiance, radiant exitance, radiant emittance, and radiosity are closely related to spectral flux density. In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric measure, as distinct from measures that characterize light in terms of the brightness to the eye, or photons. In SI units it is measured in W m−3, although it can be more practical to use W m−2 nm−1 (1 W m−2 nm−1 = 1 GW m−3 = 1 W mm−3) or W m−2 μm−1 (1 W m−2 μm−1 = 1 MW m−3), W·m−2·Hz−1, Jansky or solar flux units. The terms irradiance, radiant exitance, radiant emittance, and radiosity are closely related to spectral flux density.

[ "Radiant energy", "Radiant flux", "Radiative flux" ]
Parent Topic
Child Topic
    No Parent Topic