language-icon Old Web
English
Sign In

GUS reporter system

The GUS reporter system (GUS: β-glucuronidase) is a reporter gene system, particularly useful in plant molecular biology and microbiology. Several kinds of GUS reporter gene assay are available, depending on the substrate used. The term GUS staining refers to the most common of these, a histochemical technique. The GUS reporter system (GUS: β-glucuronidase) is a reporter gene system, particularly useful in plant molecular biology and microbiology. Several kinds of GUS reporter gene assay are available, depending on the substrate used. The term GUS staining refers to the most common of these, a histochemical technique. The purpose of this technique is to analyze the activity of a promoter (in terms of expression of a gene under that promoter) either in a quantitative way or through visualization of its activity in different tissues. The technique is based on β-glucuronidase, an enzyme from the bacterium Escherichia coli; this enzyme, when incubated with some specific colorless or non-fluorescent substrates, can transform them into coloured or fluorescent products. There are different possible glucuronides that can be used as substrates for the β-glucuronidase, depending on the type of detection needed (histochemical, spectrophotometrical, fluorimetrical). The most common substrate for GUS histochemical staining is 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc): the product of the reaction is in this case a clear blue color. Other common substrates are p-nitrophenyl β-D-glucuronide for the spectrophotometric assay and 4-methylumbelliferyl-beta-D-glucuronide (MUG) for the fluorimetric assay. The system was originally developed by Richard Anthony Jefferson during his Ph.D. at the University of Colorado at Boulder. He adapted the technique for the use with plants as he worked in the Plant Breeding Institute of Cambridge, between 1985 and 1987. Since then thousands of labs have used the system, making it one of the most widely used tools in plant molecular biology, as underlined by over 6000 citations in scientific literature. An organism is suitable for a GUS assay if it has no β-glucuronidase or if the activity is very low (background activity). For this reason the assay is not useful in most vertebrates and many molluscs. Since there is no detectable GUS activity in higher plants, mosses, algae, ferns, fungi and most bacteria, the assay is perfectly suited for these organisms.

[ "Promoter", "Genetically modified crops", "Reporter gene", "Transformation (genetics)", "Agrobacterium" ]
Parent Topic
Child Topic
    No Parent Topic