language-icon Old Web
English
Sign In

Rhizopus oryzae

Rhizopus oryzae is a filamentous heterothallic microfungus that occurs as a saprotroph in soil, dung, and rotting vegetation. This species is very similar to Rhizopus stolonifer, but it can be distinguished by its smaller sporangia and air-dispersed sporangiospores. It differs from R. oligosporus and R. microsporus by its larger columellae and sporangiospores. R. oryzae is used economically in the production of the enzymes, glucoamylase and lipase, in the synthesis of organic acids, and in various fermented foods. The many strains of R. oryzae produce a wide range of enzymes such as carbohydrate digesting enzymes and polymers along with a number of organic acids, ethanol and esters giving it useful properties within the food industries, bio-diesel production, and pharmaceutical industries. It is also an opportunistic pathogen of humans causing mucormycosis. R. oryzae was discovered by Frits Went and Hendrik Coenraad Prinsen Geerligs in 1895. The genus Rhizopus (family Mucoraceae) was erected in 1821 by the German mycologist, Christian Gottfried Ehrenberg to accommodate Mucor stolonifer and Rhizopus nigricans as distinct from the genus Mucor. The genus Rhizopus is characterized by having stolons, rhizoids, sporangiophores sprouting from the points of which rhizoids were attached, globose sporangia with columellae, striated sporangiospores. In the mid 1960s, researchers divided the genus based on temperature tolerance. Numerical methods were later used in the early 1970s where researchers arrived at similar conclusions. R. oryzae was relegated to a distinct section because it grew well at 37 °C but failed to grow at 45 °C. In the past, strains were identified through isolating active components of the species that were commonly found in food and alcoholic drinks in Indonesia, China, and Japan. There are approximately 30 synonyms, the most common being R. arrhizus. Scholer popularized R. oryzae because he thought R. arrhizus represented an extreme form of R. oryzae. Rhizopus oryzae is characterized to be a fast growing fungus where growth under optimal temperatures is fast at 1.6mm per hour (nearly 0.5 µm per second - enough to be able to directly visualize hyphal elongation in real-time under the microscope). R. oryzae can grow in temperature of 7 °C to 44 °C and the optimum growth temperature is 37 °C. There is very poor growth from 10 °C to 15 °C and no growth is observed at 45 °C. In a NaCl solution, there is good growth at a 1% NaCl concentration and there is very poor growth of the mycelia in media containing 3% NaCl. There is also no growth seen in a 5% NaCl solution. R. oryzae favors acidic media where good growth is observed at a pH of 6.8 and in the range of 7.7-8.1 there is very poor growth. Most amino acids, with the exception of L-valine, promote R. oryzae growth with L-tryptophan and L-tyrosine being the most effective. It also grows well on mineral nitrogen sources, except nitrate, and can utilize urea. Rhizopus oryzae has variable sporangiosphores. They can be straight or curved, swollen or branched, and the walls can be smooth or slightly rough. The colour of sporangiosphores range from pale brown to brown. Sporangiosphores grow between 210-2500 μm in length and 5-18 μm in diameter. The sporangia in R. oryzae are globose or subglobose, wall spinous and black when mature, 60-180 μm in diameter. They can be distinguishable from Rhizopus stolonifer as they have smaller sporangia and spores. The optimal conditions for sporangium production are temperatures between 30 °C to 35 °C and low water levels. Sporulation is stimulated by amino acids (except L-valine) when grown in light, while in darkness only L-tryptophan and L-methionine effect stimulation of growth. The columellae is globose, subglobose, or oval in shape. The wall is usually smooth and the colour is pale brown. The average diameter growth ranges from 30-110 μm. Sporangiospores are elliptical, globose, or polygonal, they are striated and grow 5-8 μm in length. Dormant and germinated sporangiospores show deep furrows and prominent ridges with a pattern that makes it distinguishable from that of R. stolonifer. The germination of sporangiospores can be induced by the combined action of L-proline and phosphate ions. L-ornithine, L-arginine, D-glucose and D-mannose are also effective. Optimal germination occurs on media containing D-glucose and mineral salts.R. oryzae has abundant, root-shaped rhizoids. Zygospores are produced by diploid cells when sexual reproduction occurs under nutrient poor conditions. They have colors that range from red to brown, they are spherical or laterally flattened, and ranges from 60-140μm in size. In high nutrient levels, R. oryzae reproduces asexually, producing azygospores. The stolons found in R. oryzae are smooth or slightly rough, almost colorless or pale brown, 5-18 μm in diameter. The chlamydospores are abundant, globose ranging in 10-24 μm in diameter, elliptical, and cylindrical. Colonies of R. oryzae are white initially, becoming brownish with age and can grow to about 1 cm thick. R. oryzae can be found in various soils across the world. For example, it has been found in India, Pakistan, New Guinea, Taiwan, Central America, Peru, Argentina, Namibia, South Africa, Iraq, Somalia, Egypt, Libya, Tunisia, Israel, Turkey, Spain, Italy, Hungary, Czechoslovakia, Germany, Ukraine, British Isles, and USA. The soils where R. oryzae has been isolated are varied ranging from grassland, cultivated soils under lupin, corn, wheat, groundnuts, other legumes, sugar canes, rice, citrus plantations, steppe type vegetation, alkaline soils, salt-marshes, farm manure soils, to sewage filled soils. The pH of the soils where the species has been isolated typically range from 6.3 to 7.2. R. oryzae is isolated from foods, often identified as R. arrhizus. It is found in rotting fruits and vegetables where it is often called R. stolonifer. Unlike the other species such as R. stolonifer, R. oryzae is common in tropical conditions. In East Asia, it is common in peanuts. For instance, there was 21% isolation from peanut kernels from Indonesia. It is present in maize, beans, sorghum, and cowpeas, pecans, hazelnuts, pistachios, wheat, barley, potatoes, sapodillas, and various other tropical foods. Maize meal on which isolates of R. oryzae had been grown was found to be toxic to ducklings and rats, causing growth depression. R. oryzae commonly causes a disease known as mucormycosis characterized by growing hyphae within and surrounding blood vessels. The causal agents of mucormycosis is the ergot alkaloid agroclavine which is toxic to humans, sheep and cattle. This infection usually occurs in immunocompromised individuals but is rare. Common risk factors associated with primary cutaneous mucormycosis is ketoacidosis, netropenia, acute lymphobloastic leukemia, lymphomas, systemic steroids, chemotherapy, and dialysis. Treatment includes amphotericin B, posaconazole, itraconazole, and fluconazole. The majority of the cases of infection are rhinocerebral infections. At the same time, it has been found in literature that R. oryzae can produce antibiotic activity on some bacteria. In Indonesia, where white cakes are commonly consumed are made from coconut and fermented with R. oryzae, traditionally called 'bongkerk' caused food poisoning. Symptoms included hypoglycemia, severe spasms, convulsions, and death.

[ "Fermentation", "Enzyme", "Amylomyces" ]
Parent Topic
Child Topic
    No Parent Topic