language-icon Old Web
English
Sign In

G.hn

G.hn is a specification for home networking with data rates up to 2 Gbit/s and operation over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. A single G.hn semiconductor device is able to network over any of the supported home wire types. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers (by allowing customer self-install). G.hn was developed under the International Telecommunication Union's Telecommunication Standardization sector (the ITU-T) and promoted by the HomeGrid Forum and several other organizations. ITU-T Recommendation (the ITU's term for standard) G.9960, which received approval on October 9, 2009, specified the physical layers and the architecture of G.hn. The Data Link Layer (Recommendation G.9961) was approved on June 11, 2010. Key promoters CEPCA, HomePNA, and UPA, creators of two of these interfaces, united behind the latest version of the standard in February 2009. The ITU-T extended the technology with multiple input, multiple output (MIMO) technology to increase data rates and signaling distance. This new feature was approved in March 2012 under G.9963 Recommendation. Amendments to the main G.9960/G.9961 added new functionalities to the base standard: G.hn specifies a single physical layer based on fast Fourier transform (FFT) orthogonal frequency-division multiplexing (OFDM) modulation and low-density parity-check code (LDPC) forward error correction (FEC) code. G.hn includes the capability to notch specific frequency bands to avoid interference with amateur radio bands and other licensed radio services. G.hn includes mechanisms to avoid interference with legacy home networking technologies and also with other wireline systems such as VDSL2 or other types of DSL used to access the home. OFDM systems split the transmitted signal into multiple orthogonal sub-carriers. In G.hn each one of the sub-carriers is modulated using QAM. The maximum QAM constellation supported by G.hn is 4096-QAM (12-bit QAM).

[ "Access network" ]
Parent Topic
Child Topic
    No Parent Topic