language-icon Old Web
English
Sign In

Catellani reaction

The Catellani reaction was discovered by Marta Catellani (Università degli Studi di Parma, Italy) and co-workers in 1997. The reaction uses aryl iodides to perform bi- or tri-functionalization, including C-H functionalization of the unsubstituted ortho position(s), followed a terminating cross-coupling reaction at the ipso position. This cross-coupling cascade reaction depends on the ortho-directing transient mediator, norbornene. The Catellani reaction was discovered by Marta Catellani (Università degli Studi di Parma, Italy) and co-workers in 1997. The reaction uses aryl iodides to perform bi- or tri-functionalization, including C-H functionalization of the unsubstituted ortho position(s), followed a terminating cross-coupling reaction at the ipso position. This cross-coupling cascade reaction depends on the ortho-directing transient mediator, norbornene. The Catellani reaction is catalyzed by palladium and norbornene, although in most cases superstochiometric amounts of norbornene are used to allow the reaction to proceed at a reasonable rate. The generally accepted reaction mechanism, as outlined below, is intricate and believed to proceed via a series of Pd(0), Pd(II), and Pd(IV) intermediates, although an alternative bimetallic mechanism that avoids the formation of Pd(IV) has also been suggested. Initially, Pd(0) oxidatively adds into the C–X bond of the aryl halide. Subsequently, the arylpalladium(II) species undergoes carbopalladation with the norbornene. The structure of the norbornylpalladium intermediate does not allow for β-hydride elimination at either of the β-positions due to Bredt's Rule for the bridgehead β-hydrogen and the trans-configuration between palladium and other β-hydrogen. Thereafter, the Pd(II) species undergoes electrophilic cyclopalladation at the ortho position of the aryl group. Subsequently, the palladacyclic intermediate undergoes a second oxidation addition with the alkyl halide coupling partner to form a Pd(IV) intermediate, which undergoes reductive elimination to forge the first C–C bond of the product. After β-carbon elimination of norbornene, the resultant Pd(II) species then undergoes a second C–C bond forming step via a Heck reaction or cross coupling with an organoboron reagent to afford the final organic product and close the catalytic cycle.

[ "Norbornene" ]
Parent Topic
Child Topic
    No Parent Topic