language-icon Old Web
English
Sign In

Tuftsin

Tuftsin is a tetrapeptide (Thr-Lys-Pro-Arg) located in the Fc-domain of the heavy chain of immunoglobulin G (residues 289-292). It has an immunostimulatory effect. Tuftsin is a tetrapeptide (Thr-Lys-Pro-Arg) located in the Fc-domain of the heavy chain of immunoglobulin G (residues 289-292). It has an immunostimulatory effect. Two enzymes are needed to release tuftsin from immunoglobulin G. First, the spleen enzyme tuftsin-endocarboxypeptidase nicks the heavy chain at the Arg-Glu bond (292-293). The arginine carboxy-terminal is now susceptible to the action of the second enzyme, carboxypeptidase β. The leukokinin-S so nicked is present in tissues and blood, free or bound to outer membrane of the appropriate phagocyte. The membrane enzyme leukokininase acts on the bound leukokinin-S to cleave it at the amino end of threonine between residues 288 and 289 (-Lys-Thr-). Free tuftsin is biologically active. The phagocytic cell plays a unique role in releasing its own activator. Leukokininase can be found on the outer membrane of phagocytic cells: blood neutrophil leukocytes of human and dog, rabbit peritoneal granulocyte. It is a highly active enzyme with pH optimum:6.8. Half-maximum stimulation is attained at about 100 nM. Stimulation of phagocytosis is obtained with polymorphonuclear leukocyte (PMN) cells from human, dog, rabbit and cow as well as with macrophages from the lung and peritoneal cavity of mice, and guinea pig and mouse bone marrow cells. This effect is inhibited by peptide analogue Thr-Lys-Pro-Pro-Arg. Basal activity is not inhibited, so basal phagocytosis may follow a different pathway from that which follows stimulation. Stimulation of pinocytosis is exerted only on phagocytic cells, not on cultured cell line mouse leukemia. The vertical motility of neutrophils in capillary tubes is stimulated by tuftsin, stimulation is inhibited by Thr-Lys-Pro-Pro-Arg. The tuftsin analogue Thr-Pro-Lys-Arg failed to show stimulation. Tuftsin augments the formation of O2− and H2O2 to a considerable extent without the need for particle phagocytosis. Experiments showed rapid response to various concentrations of tuftsin. The optimum concentration was at 375 nM. This response to tuftsin stimulation of macrophage accounts for about 90% of the superoxide formed through the xanthine oxidase system. Injection of tuftsin intraperitoneally increases the formulation of TNF in serum and supernatants of cultured splenic and peritoneal adherent cells. This was also demonstrated in vitro using HL60 leukemia cells. Tuftsin acts at the level of antigen processing. Antigen uptake by T-lymphocytes is enhanced when a given antigen is processed in the presence of tuftsin. Maximal effect was measured at tuftsin concentration 5 x 10−8 M. This process is highly specific and dependent on the structural integrity of tuftsin. Tuftsin-antigen complexes are very immunogenic. The number of antigen-forming cells increases following injections of tuftsin T-dependent antigen. Tuftsin enhances the antigen-dependent cell-mediated immunity. Spleen cell cytotoxicity is augmented to a significant degree. The enhancement of antitumour immune response by immunomodulators is capable of stimulating reticuloendothelial and T-cell-mediated tumour destruction. The effect of tuftsin on augmentation of cellular cytotoxicity was evaluated both in vitro and in vivo. In different animal models, tuftsin showed no toxicity when administrated intravenously or intraperitoneally. In a phase I study, tuftsin was shown to be nontoxic in adult human patients with advanced cancer when it was injected once intravenously (0.96 mg/kg body weight). Extensive augmentation of white blood counts and enhanced cytotoxicity of lymphocytes was notable. No detectable tuftsin-related toxicity was noticed in human patients during a phase II study, where the peptide was injected intravenously twice a week at total doses of 5 mg per injection.

[ "Peptide", "Tuftsin Deficiency", "Polytuftsin", "Tuftsin receptors" ]
Parent Topic
Child Topic
    No Parent Topic