language-icon Old Web
English
Sign In

P-type calcium channel

The P-type calcium channel is a type of voltage-dependent calcium channel. Similar to many other high-voltage-gated calcium channels, the α1 subunit determines most of the channel's properties. The 'P' signifies cerebellar Purkinje cells, referring to the channels initial site of discovery. P-type calcium channels play a similar role to the N-type calcium channel in neurotransmitter release at the presynaptic terminal and in neuronal integration in many neuronal types. The P-type calcium channel is a type of voltage-dependent calcium channel. Similar to many other high-voltage-gated calcium channels, the α1 subunit determines most of the channel's properties. The 'P' signifies cerebellar Purkinje cells, referring to the channels initial site of discovery. P-type calcium channels play a similar role to the N-type calcium channel in neurotransmitter release at the presynaptic terminal and in neuronal integration in many neuronal types. The calcium channel experiments that led to the discovery of P-type calcium channels were initially completed by Llinás and Sugimori in 1980. P type calcium channels were named in 1989 because they were discovered within mammalian Purkinje neurons. They were able to use an in vitro preparation to examine the ionic currents that account for Purkinje cells' electrophysiological properties. They found that there are calcium dependent action potentials which rise slowly and fall quickly then undergo hyperpolarization. The action potentials were voltage dependent and the afterhyperpolarizing potentials were connected to the spike bursts, located within the dendrites of the Purkinje cells. Without calcium flux in the Purkinje cells, action potentials fire sporadically at a high frequency. P-type calcium channels are voltage dependent calcium channels that are classified under the high voltage activated class channel, along with L-, N-, Q- and R-type channels. These channels require a strong depolarization in order to be activated. They are found at axon terminals, as well as in somatodendritic areas of neurons within the central and peripheral nervous system. P-type calcium channels are also critical to vesicle release, specifically neurotransmitters and hormones at synaptic terminals of excitatory and inhibitory synapses. Voltage gated P-type calcium channels consist of a main pore-forming α1 subunit (which is more specifically referred to as CaV2.1), an α2 subunit and a β subunit. There can be γ subunits found in calcium channels of skeletal muscles. The α1 subunit is encoded specifically by the CACNA1A gene and is composed of four domains, each containing six transmembrane (S1-S6) spanning α helices. The S1-S2 loop and the S6 region are thought to be responsible for the channel's inactivation, the S4 region serves as the voltage sensor and S5-S6 loop forms the pore. There are seven subunits within the α1 subunit. The A subunit, called α1ACa2+, corresponds to what is functionally defined as the P-type and Q-type isoforms. P-type and Q-type calcium channels are closely related as they are produced from the same gene via alternative splicing. As a complication of the alternative splicing, P-type and Q-type channels may have different subunit compositions. The β subunit regulates the kinetics and expression of the channel, along with the α2δ subunit. The majority of P-type calcium channels are located in the nervous system and heart. Antibody labeling is the primary method used to identify channel location.

[ "T-type calcium channel" ]
Parent Topic
Child Topic
    No Parent Topic