language-icon Old Web
English
Sign In

Rifling

In firearms, rifling refers to the helical groovings that are machined into the internal (bore) surface of a gun's barrel, for the purpose of exerting torque and thus imparting a spin to a projectile around its longitudinal axis during shooting. This spin serves to gyroscopically stabilize the projectile by conservation of angular momentum, improving its aerodynamic stability and accuracy over smoothbore designs. In firearms, rifling refers to the helical groovings that are machined into the internal (bore) surface of a gun's barrel, for the purpose of exerting torque and thus imparting a spin to a projectile around its longitudinal axis during shooting. This spin serves to gyroscopically stabilize the projectile by conservation of angular momentum, improving its aerodynamic stability and accuracy over smoothbore designs. Rifling is often described by its twist rate, which indicates the distance the rifling takes to complete one full revolution, such as '1 turn in 10 inches' (1:10 inches), or '1 turn in 254 mm' (1:254 mm). A shorter distance indicates a 'faster' twist, meaning that for a given velocity the projectile will be rotating at a higher spin rate. The combination of length, weight and shape of a projectile determines the twist rate needed to stabilize it – barrels intended for short, large-diameter projectiles like spherical lead balls require a very low twist rate, such as 1 turn in 48 inches (122 cm). Barrels intended for long, small-diameter bullets, such as the ultra-low-drag, 80-grain 0.223 inch bullets (5.2 g, 5.56 mm), use twist rates of 1 turn in 8 inches (20 cm) or faster. In some cases, rifling will have changing twist rates that increase down the length of the barrel, called a gain twist or progressive twist; a twist rate that decreases from breech to muzzle is undesirable, since it cannot reliably stabilize the bullet as it travels down the bore. Extremely long projectiles such as flechettes may require high twist rates; these projectiles must be inherently stable, and are often fired from a smoothbore barrel. Muskets were smoothbore, large caliber weapons using ball-shaped ammunition fired at relatively low velocity. Due to the high cost and great difficulty of precision manufacturing, and the need to load readily and speedily from the muzzle, musket balls were generally a loose fit in the barrels. Consequently, on firing the balls would often bounce off the sides of the barrel when fired and the final destination after leaving the muzzle was less predictable. This was countered when accuracy was more important, for example when hunting, by using a tighter-fitting combination of a closer-to-bore-sized ball and a patch. The accuracy was improved, but still not reliable for precision shooting over long distances. Barrel rifling was invented in Augsburg, Germany in 1498. In 1520 August Kotter, an armourer from Nuremberg, improved upon this work. Though true rifling dates from the mid-16th century, it did not become commonplace until the nineteenth century. The concept of stabilizing the flight of a projectile by spinning it was known in the days of bows and arrows, but early firearms using black powder had difficulty with rifling because of the fouling left behind by the dirty combustion of the powder. The most successful weapons using rifling with black powder were breech loaders such as the Queen Anne pistol. The grooves most commonly used in modern rifling have fairly sharp edges. More recently, polygonal rifling, a throwback to the earliest types of rifling, has become popular, especially in handguns. Polygonal barrels tend to have longer service lives because the reduction of the sharp edges of the land (the grooves are the spaces that are cut out, and the resulting ridges are called lands) reduces erosion of the barrel. Supporters of polygonal rifling also claim higher velocities and greater accuracy. Polygonal rifling is currently seen on pistols from CZ, Heckler & Koch, Glock, Tanfoglio, and Kahr Arms, as well as the Desert Eagle. For tanks and artillery pieces, the extended range, full bore concept developed by Gerald Bull for the GC-45 howitzer reverses the normal rifling idea by using a projectile with small fins that ride in the grooves, as opposed to using a projectile with a slightly oversized driving band which is forced into the grooves. Such guns have achieved significant increases in muzzle velocity and range. Examples include the South African G5 and the German PzH 2000.

[ "Projectile", "Barrel (unit)", "Barrel (horology)" ]
Parent Topic
Child Topic
    No Parent Topic