language-icon Old Web
English
Sign In

Vomeronasal organ

The vomeronasal organ (VNO), or Jacobson's organ, is the paired auxiliary olfactory (smell) sense organ located in the soft tissue of the nasal septum, in the nasal cavity just above the roof of the mouth (the hard palate). The name is derived from the fact that it lies adjacent to the unpaired vomer bone (from Latin vomer, plowshare, for its shape) in the nasal septum. It is present and functional in all snakes and lizards, and in many mammals, including cats, dogs, horses, cattle, pigs, and some primates; in humans it is present, but is vestigial and non-functional. The vomeronasal organ (VNO), or Jacobson's organ, is the paired auxiliary olfactory (smell) sense organ located in the soft tissue of the nasal septum, in the nasal cavity just above the roof of the mouth (the hard palate). The name is derived from the fact that it lies adjacent to the unpaired vomer bone (from Latin vomer, plowshare, for its shape) in the nasal septum. It is present and functional in all snakes and lizards, and in many mammals, including cats, dogs, horses, cattle, pigs, and some primates; in humans it is present, but is vestigial and non-functional. The VNO contains the cell bodies of sensory neurons which have receptors that detect specific non-volatile (liquid) organic compounds which are conveyed to them from the environment. These compounds emanate from prey, predators, and the compounds called sex pheromones from potential mates. Activation of the VNO triggers an appropriate behavioral response to the presence of one of these three. VNO neurons are activated by the binding of certain chemicals to their G protein-coupled receptors: they express receptors from three families, called V1R, V2R, and FPR. The axons from these neurons, called cranial nerve zero (CN 0), project to the accessory olfactory bulb, which targets the amygdala and bed nucleus of the stria terminalis, which in turn project to the anterior hypothalamus. These structures constitute the accessory olfactory system. The VNO triggers the flehmen response in some mammals, which helps direct liquid organic chemicals to the organ. The VNO was discovered by Frederik Ruysch prior to 1732, and later by Ludwig Jacobson in 1813. The VNO is found at the base of the nasal cavity. It is split into two, being divided by the nasal septum, with both sides possessing an elongated C-shaped, or crescent, lumen. It is encompassed inside a bony or cartilaginous capsule which opens into the base of the nasal cavity. The vomeronasal receptor neurons possess axons which travel from the VNO to the accessory olfactory bulb (AOB) or, as it's also known, the vomeronasal bulb. These sensory receptors are located on the medial concave surface of the crescent lumen. The lateral, convex surface of the lumen is covered with non-sensory ciliated cells, where the basal cells are also found. At the dorsal and ventral aspect of the lumen are vomeronasal glands, which fill the vomeronasal lumen with fluid. Sitting next to the lumen are blood vessels that dilate or constrict, forming a vascular pump that deliver stimuli to the lumen. A thin duct, which opens onto the floor of the nasal cavity inside the nostril, is the only way of access for stimulus chemicals. During embryological development, the vomeronasal sensory neurons form from the nasal (olfactory) placode, at the anterior edge of the neural plate (cranial nerve zero). The VNO is a tubular crescent shape and split into two pairs, separated by the nasal septum. The medial, concave area of the lumen is lined with a pseudo stratified epithelium that has three main cell types: receptor cells, supporting cells, and basal cells. The supporting cells are located superficially on the membrane while the basal cells are found on the basement membrane near the non-sensory epithelium. The receptor neurons possess apical microvilli, to which the sensory receptors are localized. These are G-protein-coupled receptors, which are often referred to as pheromone receptors since vomeronasal receptors have been tied to detecting pheromones. Three G-protein-coupled receptors have been identified in the VNO, each found in distinct regions: the V1Rs, V2Rs, and FPRs. V1Rs, V2Rs and FPRs are seven transmembrane receptors which are not closely related to odorant receptors expressed in the main olfactory neuroepithelium.

[ "Sensory system", "Receptor", "Olfactory system", "Olfactory sensory epithelium", "Incisive duct", "Accessory Olfactory Bulb", "Nasal placode", "TRPC2 Gene" ]
Parent Topic
Child Topic
    No Parent Topic