language-icon Old Web
English
Sign In

Single-wire earth return

Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at low cost. Its distinguishing feature is that the earth (or sometimes a body of water) is used as the return path for the current, to avoid the need for a second wire (or neutral wire) to act as a return path. Single-wire earth return is principally used for rural electrification, but also finds use for larger isolated loads such as water pumps. It is also used for high-voltage direct current over submarine power cables. Electric single-phase railway traction, such as light rail, uses a very similar system. It uses resistors to earth to reduce hazards from rail voltages, but the primary return currents are through the rails. Lloyd Mandeno, OBE (1888–1973) fully developed SWER in New Zealand around 1925 for rural electrification. Although he termed it 'Earth Working Single Wire Line', it was often called 'Mandeno’s Clothesline'. More than 200,000 kilometres have now been installed in Australia and New Zealand. It is considered safe, reliable and low cost, provided that safety features and earthing are correctly installed. The Australian standards are widely used and cited. It has been applied around the world, such as in the Canadian province of Saskatchewan; Brazil; Africa; and portions of the United States' Upper Midwest and Alaska (Bethel). SWER is a viable choice for a distribution system when conventional return current wiring would cost more than SWER’s isolation transformers and small power losses. Power engineers experienced with both SWER and conventional power lines rate SWER as equally safe, more reliable, less costly, but with slightly lower efficiency than conventional lines. SWER can cause fires when maintenance is poor, and bushfire is a risk. Power is supplied to the SWER line by an isolating transformer of up to 300 kVA. This transformer isolates the grid from ground or earth, and changes the grid voltage (typically 22 or 33 kV line-to-line) to the SWER voltage (typically 12.7 or 19.1 kV line-to-earth). The SWER line is a single conductor that may stretch for tens or even hundreds of kilometres, with a number of distribution transformers along its length. At each transformer, such as a customer's premises, current flows from the line, through the primary coil of a step-down isolation transformer, to earth through an earth stake. From the earth stake, the current eventually finds its way back to the main step-up transformer at the head of the line, completing the circuit. SWER is therefore a practical example of a phantom loop. In areas with high-resistance soil, the resistance of the soil wastes energy. Another issue is that the resistance may be high enough that insufficient current flows into the earth neutral, causing the grounding rod to float to higher voltages. Self-resetting circuit breakers usually reset because of a difference in voltage between line and neutral. Therefore, with dry, high-resistance soils, the reduced difference in voltage between line and neutral may prevent breakers from resetting. In Australia, locations with very dry soils need the grounding rods to be extra deep.Experience in Alaska shows that SWER needs to be grounded below permafrost, which is high-resistance. The secondary winding of the local transformer will supply the customer with either single ended single phase (N-0) or split phase (N-0-N) power in the region’s standard appliance voltages, with the 0 volt line connected to a safety earth that does not normally carry an operating current.

[ "Voltage regulation", "distribution networks" ]
Parent Topic
Child Topic
    No Parent Topic