language-icon Old Web
English
Sign In

Tree line

The tree line is the edge of the habitat at which trees are capable of growing. It is found at high elevations and high latitudes. Beyond the tree line, trees cannot tolerate the environmental conditions (usually cold temperatures or associated lack of available moisture).:51 The tree line is sometimes distinguished from a lower timberline or forest line, which is the line below which trees form a forest with a closed canopy.:151:18 The tree line is the edge of the habitat at which trees are capable of growing. It is found at high elevations and high latitudes. Beyond the tree line, trees cannot tolerate the environmental conditions (usually cold temperatures or associated lack of available moisture).:51 The tree line is sometimes distinguished from a lower timberline or forest line, which is the line below which trees form a forest with a closed canopy.:151:18 At the tree line, tree growth is often sparse, stunted, and deformed by wind and cold. This is sometimes known as krummholz (German for 'crooked wood').:58 The tree line often appears well-defined, but it can be a more gradual transition. Trees grow shorter and often at lower densities as they approach the tree line, above which they cease to exist.:55 Several types of tree lines are defined in ecology and geography: An alpine tree line is the highest elevation that sustains trees; higher up it is too cold, or the snow cover lasts for too much of the year, to sustain trees.:151 The climate above the tree line of mountains is called an alpine climate,:21 and the terrain can be described as alpine tundra. Treelines on north-facing slopes in the northern hemisphere are lower than on south-facing slopes, because the increased shade on north-facing slopes means the snowpack takes longer to melt. This shortens the growing season for trees.:109 In the southern hemisphere, the south-facing slopes have the shorter growing season. The alpine tree line boundary is seldom abrupt: it usually forms a transition zone between closed forest below and treeless alpine tundra above. This zone of transition occurs 'near the top of the tallest peaks in the northeastern United States, high up on the giant volcanoes in central Mexico, and on mountains in each of the 11 western states and throughout much of Canada and Alaska'. Environmentally dwarfed shrubs (krummholz) commonly form the upper limit. The decrease in air temperature due to increasing elevation causes the alpine climate. The rate of decrease can vary in different mountain chains, from 3.5 °F (1.9 °C) per 1,000 feet (300 m) of elevation gain in the dry mountains of the western United States, to 1.4 °F (0.78 °C) per 1,000 feet (300 m) in the moister mountains of the eastern United States. Skin effects and topography can create microclimates that alter the general cooling trend. Compared with arctic timberlines, alpine timberlines may receive fewer than half of the number of degree days (above 10 °C (50 °F)) based on air temperature, but because solar radiation intensities are greater at alpine than at arctic timberlines the number of degree days calculated from leaf temperatures may be very similar. Summer warmth generally sets the limit to which tree growth can occur, for while timberline conifers are very frost-hardy during most of the year, they become sensitive to just 1 or 2 degrees of frost in mid-summer. A series of warm summers in the 1940s seems to have permitted the establishment of 'significant numbers' of spruce seedlings above the previous treeline in the hills near Fairbanks, Alaska. Survival depends on a sufficiency of new growth to support the tree. The windiness of high-elevation sites is also a potent determinant of the distribution of tree growth. Wind can mechanically damage tree tissues directly, including blasting with windborne particles, and may also contribute to the desiccation of foliage, especially of shoots that project above snow cover.

[ "Climate change", "Vegetation" ]
Parent Topic
Child Topic
    No Parent Topic